A000914 Stirling numbers of the first kind: s(n+2, n).
0, 2, 11, 35, 85, 175, 322, 546, 870, 1320, 1925, 2717, 3731, 5005, 6580, 8500, 10812, 13566, 16815, 20615, 25025, 30107, 35926, 42550, 50050, 58500, 67977, 78561, 90335, 103385, 117800, 133672, 151096, 170170, 190995, 213675, 238317, 265031
Offset: 0
Examples
Examples include E(K_1,2,3) = s(2+2,2) = 11 and E(K_1,2,3,4,5) = s(4+2,4) = 85, where E is the function that counts edges of graphs. For n=2 the a(2)=11 functions f:[4]->[4] with exactly two f(x)=x and two f(x)>x are given by the 11 image vectors of form <f(1),f(2),f(3),f(4)> that follow: <1,3,4,4>, <1,4,4,4>, <2,2,4,4>, <3,2,4,4>, <4,2,4,4>, <2,3,3,4>, <2,4,3,4>, <3,3,3,4>, <3,4,3,4>, <4,3,3,4>, and <4,4,3,4>. - _Dennis P. Walsh_, Sep 06 2017
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
- George E. Andrews, Number Theory, Dover Publications, New York, 1971, p. 4.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 227, #16.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
- H. S. Hall and S. R. Knight, Higher Algebra, Fourth Edition, Macmillan, 1891, p. 518.
- Zhu Shijie, Jade Mirror of the Four Unknowns (Siyuan yujian), Book III Guo Duo Die Gang (Piles of Fruit), Problem number 1, 1303.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]
- Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., Vol. 1, No. 3 (1926), pp. 44-49. [Annotated scanned copy]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Zhu Shijie, Jade Mirror of the Four Unknowns 2, Translation by Library of Chinese classics, original from 1303.
- Wikipedia, Jade Mirror of the Four Unknowns.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Haskell
a000914 n = a000914_list !! n a000914_list = scanl1 (+) a006002_list -- Reinhard Zumkeller, Mar 25 2014
-
Magma
[StirlingFirst(n+2, n): n in [0..40]]; // Vincenzo Librandi, May 28 2019
-
Maple
A000914 := n -> 1/24*(n+1)*n*(n+2)*(3*n+5); A000914 := proc(n) combinat[stirling1](n+2,n) ; end proc: # R. J. Mathar, May 19 2016
-
Mathematica
Table[StirlingS1[n+2,n],{n,0,40}] (* Harvey P. Dale, Aug 24 2011 *) a[ n_] := n (n + 1) (n + 2) (3 n + 5) / 24; (* Michael Somos, Sep 04 2017 *)
-
PARI
a(n)=sum(i=1,n+1,sum(j=1,n+1,i*j*(i
-
PARI
a(n)=sum(i=1,n+1,sum(j=1,i-1,i*j)) \\ Charles R Greathouse IV, Apr 07 2015
-
PARI
a(n) = binomial(n+2, 3)*(3*n+5)/4 \\ Charles R Greathouse IV, Apr 07 2015
-
Sage
[stirling_number1(n+2, n) for n in range(41)] # Zerinvary Lajos, Mar 14 2009
Formula
a(n) = binomial(n+2, 3)*(3*n+5)/4 = (n+1)*n*(n+2)*(3*n+5)/24.
E.g.f.: exp(x)*x*(48 + 84*x + 32*x^2 + 3*x^3)/24.
G.f.: (2*x+x^2)/(1-x)^5. - Simon Plouffe in his 1992 dissertation.
a(n) = Sum_{i=1..n} i*(i+1)^2/2. - Jon Perry, Jul 31 2003
a(n) = A052149(n+1)/2. - J. M. Bergot, Jun 02 2012
-(3*n+2)*(n-1)*a(n) + (n+2)*(3*n+5)*a(n-1) = 0. - R. J. Mathar, Apr 30 2015
a(n) = a(n-1) + (n+1)*binomial(n+1,2) for n >= 1. - Dennis P. Walsh, Sep 21 2015
a(n) = A001296(-2-n) for all n in Z. - Michael Somos, Sep 04 2017
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 162*log(3)/5 - 18*sqrt(3)*Pi/5 - 384/25.
Sum_{n>=1} (-1)^(n+1)/a(n) = 36*sqrt(3)*Pi/5 - 96*log(2)/5 - 636/25. (End)
Extensions
More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 17 2000
Comments from Michael Somos, Jan 29 2000
Erroneous duplicate of the polynomial formula removed by R. J. Mathar, Sep 15 2009
Comments