A001160 sigma_5(n), the sum of the 5th powers of the divisors of n.
1, 33, 244, 1057, 3126, 8052, 16808, 33825, 59293, 103158, 161052, 257908, 371294, 554664, 762744, 1082401, 1419858, 1956669, 2476100, 3304182, 4101152, 5314716, 6436344, 8253300, 9768751, 12252702, 14408200, 17766056, 20511150
Offset: 1
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 827.
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 166.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Zagier, Don. "Elliptic modular forms and their applications." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103. See p. 17, G_6(z).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 827.
- Index entries for sequences related to sigma(n)
Crossrefs
Programs
-
Magma
[DivisorSigma(5,n): n in [1..30]]; // Bruno Berselli, Apr 10 2013
-
Maple
A001160 := proc(n) numtheory[sigma][5](n); end proc: seq(A001160(n),n=1..30) ; # R. J. Mathar, Jan 31 2017
-
Mathematica
lst={};Do[AppendTo[lst,DivisorSigma[5,n]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *) DivisorSigma[5,Range[30]] (* Harvey P. Dale, Nov 11 2013 *)
-
PARI
a(n)=sigma(n,5) \\ Charles R Greathouse IV, Apr 28 2011
-
Sage
[sigma(n, 5) for n in range(1, 30)] # Zerinvary Lajos, Jun 04 2009
Formula
Multiplicative with a(p^e) = (p^(5e+5)-1)/(p^5-1). - David W. Wilson, Aug 01 2001
G.f.: sum(k>=1, k^5*x^k/(1-x^k)). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s)*zeta(s-5). - R. J. Mathar, Mar 06 2011
G.f. also (1 - E_6(q))/540, with the g.f. E_6 of A013973. See Hardy p. 166, (10.5.7) with R = E_6. - Wolfdieter Lang, Jan 31 2017
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^4)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
a(n) = Sum_{1 <= i, j, k, l, m <= n} tau(gcd(i, j, k, l, m, n)) = Sum_{d divides n} tau(d) * J_5(n/d), where the divisor function tau(n) = A000005(n) and the Jordan totient function J_5(n) = A059378(n). - Peter Bala, Jan 22 2024
Comments