A001177 Fibonacci entry points: a(n) = least k >= 1 such that n divides Fibonacci number F_k (=A000045(k)).
1, 3, 4, 6, 5, 12, 8, 6, 12, 15, 10, 12, 7, 24, 20, 12, 9, 12, 18, 30, 8, 30, 24, 12, 25, 21, 36, 24, 14, 60, 30, 24, 20, 9, 40, 12, 19, 18, 28, 30, 20, 24, 44, 30, 60, 24, 16, 12, 56, 75, 36, 42, 27, 36, 10, 24, 36, 42, 58, 60, 15, 30, 24, 48, 35, 60, 68, 18, 24, 120
Offset: 1
Keywords
Examples
a(4) = 6 because the smallest Fibonacci number that 4 divides is F(6) = 8. a(5) = 5 because the smallest Fibonacci number that 5 divides is F(5) = 5. a(6) = 12 because the smallest Fibonacci number that 6 divides is F(12) = 144. From _Wolfdieter Lang_, Jan 19 2015: (Start) a(2) = 3, hence 2 | F(m) iff m = 2*k, for k >= 0; a(3) = 4, hence 3 | F(m) iff m = 4*k, for k >= 0; etc. See a comment above with the Vajda reference. (End)
References
- A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 25.
- B. H. Hannon and W. L. Morris, Tables of Arithmetical Functions Related to the Fibonacci Numbers. Report ORNL-4261, Oak Ridge National Laboratory, Oak Ridge, Tennessee, June 1968.
- Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers, Afterword by Herbert A. Hauptman, Nobel Laureate, 2. 'The Minor Modulus m(n)', Prometheus Books, NY, 2007, page 329-342.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.
- N. N. Vorob'ev, Fibonacci numbers, Blaisdell, NY, 1961.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- A. Allard and P. Lecomte, Periods and entry points in Fibonacci sequence, Fib. Quart. 17 (1) (1979) 51-57.
- R. C. Archibald (?), Review of B. H. Hannon and W. L. Morris, Tables of arithmetical functions related to the Fibonacci numbers, Math. Comp., 23 (1969), 459-460.
- B. Avila and T. Khovanova, Free Fibonacci Sequences, arXiv preprint arXiv:1403.4614 [math.NT], 2014 and J. Int. Seq. 17 (2014) # 14.8.5.
- Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972. See p. 25.
- J. D. Fulton and W. L. Morris, On arithmetical functions related to the Fibonacci numbers, Acta Arithmetica, 16 (1969), 105-110.
- Molly FitzGibbons, Steven J. Miller, and Amanda Verga, Dynamics of the Fibonacci Order of Appearance Map, arXiv:2309.14501 [math.NT], 2023.
- Ramon Glez-Regueral, An entry-point algorithm for high-speed factorization, Thirteenth Internat. Conf. Fibonacci Numbers Applications, Patras, Greece, 2008.
- B. H. Hannon and W. L. Morris, Tables of Arithmetical Functions Related to the Fibonacci Numbers [Annotated and scanned copy]
- Ron Knott, The first 300 Fibonacci numbers factorized
- Paolo Leonetti and Carlo Sanna, On the greatest common divisor of n and the nth Fibonacci number, arXiv:1704.00151 [math.NT], 2017. See z(n).
- Diego Marques, Fixed points of the order of appearance in the Fibonacci sequence, Fibonacci Quart. 50:4 (2012), pp. 346-352.
- Diego Marques, The order of appearance of the product of consecutive Lucas numbers, Fibonacci Quarterly, 51 (2013), 38-43.
- Diego Marques, Sharper upper bounds for the order of appearance in the fibonacci sequence, Fibonacci Quarterly, 51 (2013), pp. 233-238.
- Zuzana Masáková and Edita Pelantová, Midy's Theorem in non-integer bases and divisibility of Fibonacci numbers, arXiv:2401.03874 [math.NT], 2024. See page 9.
- Marc Renault, The Fibonacci sequence under various moduli, Masters Thesis, Wake Forest University, 1996.
- Samin Riasat, Z[phi] and the Fibonacci Sequence Modulo n, Mathematical Reflections 1 (2011): 1 - 7.
- H. J. A. Salle, A Maximum Value for the Rank of Apparition of Integers in Recursive Sequences , Fibonacci Quart. 13.2 (1975) 159-161.
- U. Stroinski, Connection between Euler's totient function and Fibonacci numbers, Mathematics Stack Exchange, Feb 17 2015.
- D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly 67 (6) (1960) 525-532.
- Eric Weisstein, MathWorld: Wall-Sun-Sun Prime
Crossrefs
Cf. A000045, A001175, A001176, A060383, A001602. First occurrence of k is given in A131401. A233281 gives such k that a(k) is a prime.
From Antti Karttunen, Dec 21 2013: (Start)
Various derived sequences:
A132632(n) = a(n^2).
A132633(n) = a(n^3).
A214528(n) = a(n!).
A215453(n) = a(n^n).
Programs
-
Haskell
a001177 n = head [k | k <- [1..], a000045 k `mod` n == 0] -- Reinhard Zumkeller, Jan 15 2014
-
Maple
A001177 := proc(n) for k from 1 do if combinat[fibonacci](k) mod n = 0 then return k; end if; end do: end proc: # R. J. Mathar, Jul 09 2012 N:= 1000: # to get a(1) to a(N) L:= ilcm($1..N): count:= 0: for n from 1 while count < N do fn:= igcd(L,combinat:-fibonacci(n)); divs:= select(`<=`,numtheory:-divisors(fn),N); for d in divs do if not assigned(A[d]) then count:= count+1; A[d]:= n fi od: od: seq(A[n],n=1..N); # Robert Israel, Oct 14 2015
-
Mathematica
fibEntry[n_] := Block[{k = 1}, While[ Mod[ Fibonacci@k, n] != 0, k++ ]; k]; Array[fibEntry, 74] (* Robert G. Wilson v, Jul 04 2007 *)
-
PARI
a(n)=if(n<0,0,s=1;while(fibonacci(s)%n>0,s++);s) \\ Benoit Cloitre, Feb 10 2007
-
PARI
ap(p)=my(k=p+[0, -1, 1, 1, -1][p%5+1], f=factor(k)); for(i=1, #f[, 1], for(j=1, f[i, 2], if((Mod([1, 1; 1, 0], p)^(k/f[i, 1]))[1, 2], break); k/=f[i, 1])); k a(n)=if(n==1,return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i,1]>1e14,ap(f[i,1]^f[i,2]), ap(f[i,1])*f[i,1]^(f[i,2]-1))); if(f[1,1]==2&&f[1,2]>1, v[1]=3<
Charles R Greathouse IV, May 08 2017 -
Scheme
(define (A001177 n) (let loop ((k 1)) (cond ((zero? (modulo (A000045 k) n)) k) (else (loop (+ k 1)))))) ;; Antti Karttunen, Dec 21 2013
Formula
a(n) = n if and only if n is of form 5^k or 12*5^k (proved in Marques paper), a(n) = n - 1 if and only if n is in A106535, a(n) = n + 1 if and only if n is in A000057, a(n) = n + 5 if and only if n is in 5*A000057, ... - Benoit Cloitre, Feb 10 2007
a(1) = 1, a(2) = 3, a(4) = 6 and for e > 2, a(2^e) = 3*2^(e-2); a(5^e) = 5^e; and if p is an odd prime not 5, then a(p^e) = p^max(0, e-s)*a(p) where s = valuation(A000045(a(p)), p) (Wall's conjecture states that s = 1 for all p). If (m, n) = 1 then a(m*n) = lcm(a(m), a(n)). See Posamentier & Lahmann. - Robert G. Wilson v, Jul 07 2007; corrected by Max Alekseyev, Oct 19 2007, Jun 24 2011
a(n) < n^2. [Vorob'ev]. - Zak Seidov, Jan 07 2016
a(n) < n^2 - 3n + 6. - Jinyuan Wang, Oct 13 2018
a(n) <= 2n [Salle]. - Jon Maiga, Apr 25 2019
Extensions
Definition corrected by Wolfdieter Lang, Jan 19 2015
Comments