cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A067113 Let N = 0.149162536496481100121... = A001191, the concatenation of the squares. Then a(n) = sum of first n digits of N.

Original entry on oeis.org

1, 5, 14, 15, 21, 23, 28, 31, 37, 41, 50, 56, 60, 68, 69, 70, 70, 70, 71, 73, 74, 75, 79, 83, 84, 90, 99, 100, 109, 115, 117, 119, 124, 126, 131, 137, 139, 147, 156, 159, 161, 165, 168, 174, 175, 179, 179, 179, 183, 187, 188, 192, 200, 204, 209, 211, 220, 225, 232
Offset: 1

Views

Author

Amarnath Murthy, Jan 08 2002

Keywords

Examples

			a(5) = 1+4+9+1+6 = 21.
		

Formula

a(n) ~ 4.5n (since 0.149162536... = A001191 is 10-normal).

Extensions

Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 19 2003
Asymptotic formula from Charles R Greathouse IV, Oct 04 2008

A175959 Positions of 1's in A001191 (Digits of squares).

Original entry on oeis.org

1, 4, 15, 16, 19, 21, 22, 25, 28, 45, 51, 75, 81, 82, 86, 90, 91, 94, 98, 102, 106, 110, 113, 114, 118, 121, 122, 126, 130, 139, 140, 153, 161, 172, 179, 193, 201, 233, 241, 243, 273, 281, 313, 315, 321, 340, 353, 354, 359, 363, 364, 369, 374, 377, 379, 380, 384
Offset: 1

Views

Author

Zak Seidov, Oct 30 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Position[Flatten[IntegerDigits/@(Range[200]^2)],1]] (* Harvey P. Dale, Aug 14 2014 *)

A175960 First occurrences of decimal digits 0..9 in A001191 (Digits of squares).

Original entry on oeis.org

17, 1, 6, 8, 2, 7, 5, 59, 14, 3
Offset: 0

Views

Author

Zak Seidov, Oct 30 2010

Keywords

Crossrefs

A033307 Decimal expansion of Champernowne constant (or Mahler's number), formed by concatenating the positive integers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 2, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 9, 3, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 4, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, 8, 4, 9, 5, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 6, 5
Offset: 0

Views

Author

Keywords

Comments

This number is known to be normal in base 10.
Named after David Gawen Champernowne (July 9, 1912 - August 19, 2000). - Robert G. Wilson v, Jun 29 2014

Examples

			0.12345678910111213141516171819202122232425262728293031323334353637383940414243...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.9, p. 442.
  • G. Harman, One hundred years of normal numbers, in M. A. Bennett et al., eds., Number Theory for the Millennium, II (Urbana, IL, 2000), 149-166, A K Peters, Natick, MA, 2002.
  • C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 364.
  • H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970, p. 172.

Crossrefs

See A030167 for the continued fraction expansion of this number.
A007376 is the same sequence but with a different interpretation.
Cf. A007908, A000027, A001191 (concatenate squares).
Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b = 2), A003137 and A054635 (b = 3), A030373 (b = 4), A031219 (b = 5), A030548 (b = 6), A030998 (b = 7), A031035 and A054634 (b = 8), A031076 (b = 9), A007376 and this sequence (b = 10). - Jason Kimberley, Dec 06 2012
Cf. A065648.
Cf. A365237 (reciprocal).

Programs

  • Haskell
    a033307 n = a033307_list !! n
    a033307_list = concatMap (map (read . return) . show) [1..] :: [Int]
    -- Reinhard Zumkeller, Aug 27 2013, Mar 28 2011
    
  • Magma
    &cat[Reverse(IntegerToSequence(n)):n in[1..50]]; // Jason Kimberley, Dec 07 2012
    
  • Mathematica
    Flatten[IntegerDigits/@Range[0, 57]] (* Or *)
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 10] &, 105] (* Robert G. Wilson v, Jul 23 2012 and modified Jul 04 2014 *)
    intermediate[n_] := Ceiling[FullSimplify[ProductLog[Log[10]/10^(1/9) (n - 1/9)] / Log[10] + 1/9]]; champerDigit[n_] := Mod[Floor[10^(Mod[n + (10^intermediate[n] - 10)/9, intermediate[n]] - intermediate[n] + 1) Ceiling[(9n + 10^intermediate[n] - 1)/(9intermediate[n]) - 1]], 10]; (* David W. Cantrell, Feb 18 2007 *)
    First[RealDigits[ChampernowneNumber[], 10, 100]] (* Paolo Xausa, May 02 2024 *)
  • PARI
    { default(realprecision, 20080); x=0; y=1; d=10.0; e=1.0; n=0; while (y!=x, y=x; n++; if (n==d, d=d*10); e=e*d; x=x+n/e; ); d=0; for (n=0, 20000, x=(x-d)*10; d=floor(x); write("b033307.txt", n, " ", d)); } \\ Harry J. Smith, Apr 20 2009
    
  • Python
    from itertools import count
    def agen():
        for k in count(1): yield from list(map(int, str(k)))
    a = agen()
    print([next(a) for i in range(104)]) # Michael S. Branicky, Sep 13 2021
  • Scala
    val numerStr = (1 to 100).map(Integer.toString()).toList.reduce( + _)
    numerStr.split("").map(Integer.parseInt()).toList // _Alonso del Arte, Nov 04 2019
    

Formula

Let "index" i = ceiling( W(log(10)/10^(1/9) (n - 1/9))/log(10) + 1/9 ) where W denotes the principal branch of the Lambert W function. Then a(n) = (10^((n + (10^i - 10)/9) mod i - i + 1) * ceiling((9n + 10^i - 1)/(9i) - 1)) mod 10. See also Mathematica code. - David W. Cantrell, Feb 18 2007

A134724 Successive decimal digits of the cubes A000578.

Original entry on oeis.org

0, 1, 8, 2, 7, 6, 4, 1, 2, 5, 2, 1, 6, 3, 4, 3, 5, 1, 2, 7, 2, 9, 1, 0, 0, 0, 1, 3, 3, 1, 1, 7, 2, 8, 2, 1, 9, 7, 2, 7, 4, 4, 3, 3, 7, 5, 4, 0, 9, 6, 4, 9, 1, 3, 5, 8, 3, 2, 6, 8, 5, 9, 8, 0, 0, 0, 9, 2, 6, 1, 1, 0, 6, 4, 8, 1, 2, 1, 6, 7, 1, 3, 8, 2, 4, 1, 5, 6, 2, 5, 1, 7, 5, 7, 6, 1, 9, 6, 8, 3
Offset: 0

Views

Author

Omar E. Pol, Nov 12 2007

Keywords

Comments

Davenport & Erdős show that 0.0182764125..., this sequence interpreted as a constant, is 10-normal. (Indeed, it shows this property for any nonconstant polynomial mapping positive integers to positive integers has this property, regardless of the base chosen.) - Charles R Greathouse IV, Oct 02 2013

Crossrefs

Programs

  • Mathematica
    Flatten[IntegerDigits/@(Range[0,30]^3)] (* Harvey P. Dale, Sep 12 2012 *)
  • PARI
    for(n=0,10,my(d=digits(n^3));for(i=1,#d,print1(d[i]", "))) \\ Charles R Greathouse IV, Oct 02 2013

A340207 Constant whose decimal expansion is the concatenation of the largest n-digit square A061433(n), for n = 1, 2, 3, ...

Original entry on oeis.org

9, 8, 1, 9, 6, 1, 9, 8, 0, 1, 9, 9, 8, 5, 6, 9, 9, 8, 0, 0, 1, 9, 9, 9, 8, 2, 4, 4, 9, 9, 9, 8, 0, 0, 0, 1, 9, 9, 9, 9, 5, 0, 8, 8, 4, 9, 9, 9, 9, 8, 0, 0, 0, 0, 1, 9, 9, 9, 9, 9, 5, 1, 5, 5, 2, 9, 9, 9, 9, 9, 9, 8, 0, 0, 0, 0, 0, 1, 9, 9, 9, 9, 9, 9, 5, 8
Offset: 0

Views

Author

M. F. Hasler, Jan 01 2021

Keywords

Comments

The terms of sequence A339978 converge to this sequence of digits, and to this constant, up to powers of 10.

Examples

			The largest square with 1, 2, 3, 4, ... digits is, respectively, 9 = 3^2, 81 = 9^2, 961 = 31^2, 9801 = 99^2, ....
Here we list the sequence of digits of these numbers: 9; 8, 1; 9, 6, 1; 9, 8, 0, 1; 9, 9, 8, 5, 6; ...
This can be considered, as for the Champernowne and Copeland-Erdős constants, as the decimal expansion of a real constant 0.98196198...
		

Crossrefs

Cf. A061433 (largest n-digit square), A339978 (has this as "limit"), A340208 (same with "smallest n-digit cube", limit of A215692), A340209 (same for cubes, limit of A340115), A340220 (same for primes), A340219 (similar, with smallest primes, limit of A215641), A340222 (same for semiprimes), A340221 (same for smallest semiprimes, limit of A215647).
Cf. A033307 (Champernowne constant), A030190 (binary), A001191 (concatenation of all squares), A134724 (cubes), A033308 (primes: Copeland-Erdős constant).

Programs

  • Mathematica
    lnds[k_]:=Module[{c=Sqrt[10^k]},If[IntegerQ[c],(c-1)^2,Floor[c]^2]]; Flatten[IntegerDigits/@(lnds/@Range[15])] (* Harvey P. Dale, Dec 16 2021 *)
  • PARI
    concat([digits(sqrtint(10^k-1)^2)|k<-[1..14]]) \\ as seq. of digits
    c(N=20)=sum(k=1,N,.1^(k*(k+1)/2)*sqrtint(10^k-1)^2) \\ as constant

Formula

c = 0.9819619801998569980019998244999800019999508849999800001999995155...
= Sum_{k >= 1} 10^(-k(k+1)/2)*floor(10^(k/2)-1)^2
a(-n(n+1)/2) = 9 for all n >= 2.

A340208 Constant whose decimal expansion is the concatenation of the smallest n-digit cube A061434(n), for n = 1, 2, 3, ...

Original entry on oeis.org

1, 2, 7, 1, 2, 5, 1, 0, 0, 0, 1, 0, 6, 4, 8, 1, 0, 3, 8, 2, 3, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 7, 7, 6, 9, 6, 1, 0, 0, 5, 4, 4, 6, 2, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 7, 8, 7, 3, 8, 7, 5, 1, 0, 0, 0, 2, 6, 5, 7, 7, 2, 8, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

M. F. Hasler, Dec 31 2020

Keywords

Comments

Every third smallest n-digit cube (i.e., for n = 3k + 1, k >= 0) is 10^k, which explains the chunks of (1,0,...,0), cf. formula.
The terms of sequence A215692 converge to this sequence of digits, and to this constant, up to powers of 10.

Examples

			The smallest cube with 1, 2, 3, 4, ... digits is, respectively, 1, 27 = 3^3, 125 = 5^3, 1000 = 10^3, .... Here we list the sequence of digits of these numbers: 1; 2, 7; 1, 2, 5; 1, 0, 0, 0; ...
This can be considered, as for the Champernowne and Copeland-Erdős constants, as the decimal expansion of a real constant 0.1271251000106481...
		

Crossrefs

Cf. A061434 (smallest n-digit cube), A215692 (has this as "limit"), A340209 (same with largest n-digit cubes, limit of A340115), A340206 (same for squares, limit of A215689), A340219 (same for primes, limit of A215641), A340221 (same for semiprimes, limit of A215647).
Cf. A033307 (Champernowne constant), A030190 (binary), A001191 (concatenation of all squares), A134724 (cubes), A033308 (primes: Copeland-Erdős constant).

Programs

  • PARI
    concat([digits(ceil(10^((k-1)/3))^3)|k<-[1..14]]) \\ as seq. of digits
    c(N=12)=sum(k=1,N,.1^(k*(k+1)/2)*ceil(10^((k-1)/2))^2) \\ as constant

Formula

c = 0.12712510001064810382310000001007769610054462510000000001000787387510002657...
= Sum_{k >= 1} 10^(-k(k+1)/2)*ceiling(10^((k-1)/3))^2
a(-n(n+1)/2) = 1 for all n >= 2;
a(k) = 0 for -3n(3n+1)/2 > k > -(3n+1)(3n+2)/2, n >= 0.

A340219 Constant whose decimal expansion is the concatenation of the smallest n-digit prime A003617(n), for n = 1, 2, 3, ...

Original entry on oeis.org

2, 1, 1, 1, 0, 1, 1, 0, 0, 9, 1, 0, 0, 0, 7, 1, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 1, 9, 1, 0, 0, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 7, 1, 0, 0, 0
Offset: 0

Views

Author

M. F. Hasler, Jan 01 2021

Keywords

Comments

The terms of sequence A215641 converge to this sequence of digits, and to this constant, up to powers of 10.

Examples

			The smallest prime with 1, 2, 3, 4, ... digits is, respectively, 2, 11, 101, 1009, .... Here we list the sequence of digits of these numbers: 2: 1, 1; 1, 0, 1; 1, 0, 0, 9; ...
This can be considered, as for the Champernowne and Copeland-Erdős constants, as the decimal expansion of a real constant 0.2111011009...
		

Crossrefs

Cf. A003617 (smallest n-digit prime), A215641 (has this as "limit"), A340206 (same for squares, limit of A215689), A340207 (similar, with largest n-digit squares, limit of A339978), A340208 (same for cubes, limit of A215692), A340209 (same with largest n-digit cube, limit of A340115), A340221 (same for semiprimes, limit of A215647).
Cf. A033307 (Champernowne constant), A030190 (binary), A001191 (concatenation of all squares), A134724 (cubes), A033308 (primes: Copeland-Erdős constant).

Programs

  • Mathematica
    Flatten[Table[IntegerDigits[NextPrime[10^n]],{n,0,20}]] (* Harvey P. Dale, Mar 29 2024 *)
  • PARI
    concat([digits(nextprime(10^k))|k<-[0..14]]) \\ as seq. of digits
    c(N=20)=sum(k=1,N,.1^(k*(k+1)/2)*nextprime(10^(k-1))) \\ as constant

Formula

c = 0.21110110091000710000310000031000001910000000710000000071000000001...
= Sum_{k >= 1} 10^(-k(k+1)/2)*nextprime(10^(k-1))
a(-n(n+1)/2) = 1 for all n >= 2, followed by increasingly more zeros.

A340221 Constant whose decimal expansion is the concatenation of the smallest n-digit semiprime A098449(n), for n = 1, 2, 3, ...

Original entry on oeis.org

4, 1, 0, 1, 0, 6, 1, 0, 0, 3, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

M. F. Hasler, Jan 01 2021

Keywords

Comments

The terms of sequence A215647 converge to this sequence of digits, and to this constant, up to powers of 10.

Examples

			The smallest prime with 1, 2, 3, 4, ... digits is, respectively, 2, 11, 101, 1009, .... Here we list the sequence of digits of these numbers: 2: 1, 1; 1, 0, 1; 1, 0, 0, 9; ...
This can be considered, as for the Champernowne and Copeland-Erdős constants, as the decimal expansion of a real constant 0.2111011009...
		

Crossrefs

Cf. A098449 (smallest n-digit semiprime), A215647 (has this as "limit"), A340206 (same for squares, limit of A215689), A340207 (similar, with largest n-digit squares, limit of A339978), A340208 (same for cubes, limit of A215692), A340209 (same with largest n-digit cube, limit of A340115), A340219 (same for primes, limit of A215641).
Cf. A033307 (Champernowne constant), A030190 (binary), A001191 (concatenation of all squares), A134724 (cubes), A033308 (primes: Copeland-Erdős constant).

Programs

  • PARI
    concat([digits(A098449(k))|k<-[1..14]]) \\ as seq. of digits
    c(N=20)=sum(k=1,N,.1^(k*(k+1)/2)*A098449(k)) \\ as constant

Formula

c = 0.410106100310001100001100000110000001100000001100000000610000000003...
= Sum_{k >= 1} 10^(-k(k+1)/2)*A098449(k)
a(-n(n+1)/2) = 1 for all n >= 2, followed by increasingly more zeros.

A340209 Constant whose decimal expansion is the concatenation of the largest n-digit cube A061435(n), for n = 1, 2, 3, ...

Original entry on oeis.org

8, 6, 4, 7, 2, 9, 9, 2, 6, 1, 9, 7, 3, 3, 6, 9, 7, 0, 2, 9, 9, 9, 9, 3, 8, 3, 7, 5, 9, 9, 8, 9, 7, 3, 4, 4, 9, 9, 7, 0, 0, 2, 9, 9, 9, 9, 9, 9, 3, 9, 4, 8, 2, 6, 4, 9, 9, 9, 6, 1, 9, 4, 6, 7, 2, 1, 9, 9, 9, 7, 0, 0, 0, 2, 9, 9, 9, 9, 9, 9, 9, 9, 5
Offset: 0

Views

Author

M. F. Hasler, Jan 01 2021

Keywords

Comments

The terms of sequence A340115 converge to this sequence of digits, and to this constant, up to powers of 10.

Examples

			The largest cube with 1, 2, 3, 4, ... digits is, respectively, 8 = 2^3, 64 = 4^3, 729 = 9^3, 9261 = 21^3, ..., cf. A061435.
Here we list the sequence of digits of these numbers: 8; 6, 4; 7, 2, 9; 9, 2, 6, 1; ...
This can be considered, as for the Champernowne and Copeland-Erdős constants, as the decimal expansion of a real constant 0.864729926...
		

Crossrefs

Cf. A061435 (largest n-digit cube), A340115 (has this as "limit"), A340208 (similar, with smallest n-digit cubes, limit of A215692), A340207 (same for squares, limit of A339978), A340220 (same for primes), A340222 (same for semiprimes), A340219 (similar, with smallest primes, limit of A215641), A340221 (similar, with smallest semiprimes, limit of A215647).
Cf. A033307 (Champernowne constant), A030190 (binary), A001191 (concatenation of all squares), A134724 (cubes), A033308 (primes: Copeland-Erdős constant).

Programs

  • PARI
    concat([digits(sqrtnint(10^k-1,3)^3)|k<-[1..14]]) \\ as seq. of digits
    c(N=20)=sum(k=1,N,.1^(k*(k+1)/2)*sqrtnint(10^k-1,3)^3) \\ as constant

Formula

c = 0.86472992619733697029999383759989734499700299999939482649996194672...
= Sum_{k >= 1} 10^(-k(k+1)/2)*floor(10^(k/3)-1)^3
a(-n(n+1)/2) = 9 for all n >= 3;
Showing 1-10 of 15 results. Next