cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001246 Squares of Catalan numbers.

Original entry on oeis.org

1, 1, 4, 25, 196, 1764, 17424, 184041, 2044900, 23639044, 282105616, 3455793796, 43268992144, 551900410000, 7152629313600, 93990019574025, 1250164827828900, 16807771574144100, 228138727737690000, 3123219182728976100, 43087676888260976400, 598598221893939680400, 8369059450146650049600
Offset: 0

Views

Author

Keywords

Comments

Also multi-component meanders.
Also, number of walks within N^2 (the first quadrant of Z^2) starting and ending at (0,0) and consisting of 2 n steps taken from {(-1, -1), (-1, 1), (1, -1), (1, 1)}. [Evans and Pugh show that this is the same sequence.] - N. J. A. Sloane, Jul 04 2014
This is probably the diagonal of A209805. In this case a(n) = number of non-crossing partitions up to rotation of [2n+1] into n+1 blocks. See "Partition related number triangles" in Links section. - Tilman Piesk, Apr 09 2012
a(n) is also the number of regular cover graphs of lattice quotients of essential lattice congruences of the weak order on the symmetric group S_{n+1}. See Table 1 in the Hoang/Mütze reference in the Links section. - Torsten Muetze, Nov 28 2019

Crossrefs

Row sums of triangle A008828.
Probably diagonal of A209805.

Programs

  • GAP
    List([0..25],n->(Binomial(2*n,n)/(n+1))^2); # Muniru A Asiru, Mar 28 2018
  • Maple
    seq((binomial(2*n,n)/(1+n))^2, n=0..18); # Zerinvary Lajos, Jun 18 2007
  • Mathematica
    aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, 2 n], {n, 0, 25}] (* Manuel Kauers, Nov 18 2008 *)
    CatalanNumber[Range[0,30]]^2  (* Harvey P. Dale, Apr 26 2011 *)
    a[ n_] := If[ n == -1, 0, CatalanNumber[ n]^2] (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ (2 EllipticE[ 16 x] - (1 - 16 x) EllipticK[ 16 x] - Pi/2) / ( 2 Pi x), {x, 0, n}] (* Michael Somos, Jul 11 2011 *)
    a[ n_] := If[ n < 0, 0, (2 n)! SeriesCoefficient[ HypergeometricPFQ[ {1/2}, {2, 2}, 4 x^2], {x, 0, 2 n}]] (* Michael Somos, Jul 11 2011 *)
  • MuPAD
    combinat::dyckWords::count(n)^2 $ n = 0..18 // Zerinvary Lajos, Feb 15 2007
    
  • PARI
    a(n)=(binomial(2*n,n)/(n+1))^2 \\ Charles R Greathouse IV, Jul 16 2011
    
  • Sage
    [catalan_number(i)^2 for i in range(0,19)] # Zerinvary Lajos, May 17 2009
    

Formula

G.f.: -1/(4*x)+1/2*(16*x-1)/x * EllipticK(4*x^(1/2))/Pi + 1/x*EllipticE(4*x^(1/2))/Pi. - Vladeta Jovovic, Oct 12 2003
G.f.: 3F2( (1, 1/2, 1/2); (2, 2); 16x) = (-1 + 2F1( (-1/2, -1/2); (1); 16x))/(4*x) - Olivier Gérard, Feb 16 2011
E.g.f.: hypergeom([1/2], [2, 2], 4*x^2) = 2*BesselI(0, 2*x)^2-BesselI(0, 2*x)*BesselI(1, 2*x)/x-2*BesselI(1, 2*x)^2. - Vladeta Jovovic, Jun 04 2005
D-finite with recurrence (n+1)^2*a(n) -4*(2*n-1)^2*a(n-1)=0. - R. J. Mathar, Jan 04 2013
From Ilya Gutkovskiy, Mar 23 2017: (Start)
a(n) ~ 16^n/(Pi*n^3).
Sum_{n>=0} 1/a(n) = 3F2(1,2,2; 1/2,1/2; 1/16) = 2.295732295098655... (End)
Sum {n>=0} a(n)*(n+1)/16^n = 4/Pi. This is a kind of Ramanujan-Sato series. - Ralf Steiner, Mar 23 2017
From Peter Bala, Mar 28 2018: (Start)
a(n) = 1/(2*n + 1)*f(2*n)/(f(n)*f(n)), where f(n) = n!*(n+1)!. Cf. Catalan(n) = 1/(n + 1)*(2*n)!/(n!*n!).
a(n) = 1/(2*n + 1)*A000891(n).
a(n) = (n + 2)/(2*n + 1)*A000356(n).
a(n) = (n + 2)/3*A186264(n-1). (End)
From Amiram Eldar, Mar 27 2022: (Start)
a(n) = A000108(n)^2.
Sum_{n>=0} a(n)/16^n = 16/Pi - 4. (End)

Extensions

As a result of the work of Evans and Pugh, it was possible to merge A151342 with this sequence. - N. J. A. Sloane, Jul 04 2014