cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001297 Stirling numbers of the second kind S(n+3, n).

Original entry on oeis.org

0, 1, 15, 90, 350, 1050, 2646, 5880, 11880, 22275, 39325, 66066, 106470, 165620, 249900, 367200, 527136, 741285, 1023435, 1389850, 1859550, 2454606, 3200450, 4126200, 5265000, 6654375, 8336601, 10359090, 12774790, 15642600, 19027800
Offset: 0

Views

Author

Keywords

Examples

			a(2) = 1*1*1 + 1*1*2 + 1*2*2 + 2*2*2 = 15
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 227, #16.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n^2*(n+1)^2*(n+2)*(n+3)/48: n in [0..40]]; // Vincenzo Librandi, Sep 22 2017
  • Maple
    A001297:=-(1+8*z+6*z**2)/(z-1)**7; # Simon Plouffe in his 1992 dissertation, without the initial 0
  • Mathematica
    lst={};Do[f=StirlingS2[n+3, n];AppendTo[lst, f], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
    a[ n_] := n^2 (n + 1)^2 (n + 2) (n + 3) / 48; (* Michael Somos, Sep 04 2017 *)
    Table[StirlingS2[n+3,n],{n,0,30}] (* Harvey P. Dale, Dec 30 2019 *)
  • PARI
    {a(n) = n^2 * (n+1)^2 * (n+2) * (n+3) / 48}; /* Michael Somos, Sep 04 2017 */
    
  • Sage
    [stirling_number2(n+3,n) for n in range(0, 34)] # Zerinvary Lajos, May 16 2009
    

Formula

G.f.: x*(1 + 8*x + 6*x^2)/(1 - x)^7. - Paul Barry, Aug 05 2004
E.g.f. with offset -2: exp(x)*(1*(x^3)/3! + 11*(x^4)/4! + 25*(x^5)/5! + 15*(x^6)/6!). For the coefficients [1, 11, 25, 15] see triangle A112493. E.g.f.: 1/48*x*exp(x)*(x^5+22*x^4+152*x^3+384*x^2+312*x+48)/48. Above given e.g.f. differentiated twice.
a(n) = (binomial(n+4, n-1) - binomial(n+3, n-2))*(binomial(n+2, n-1) - binomial(n+1, n-2)). - Zerinvary Lajos, May 12 2006
a(n) = binomial(n+1, 2)*binomial(n+3, 4). - Vladimir Shevelev, Dec 18 2011
O.g.f.: D^3(x/(1-x)) = D^4(x), where D is the operator x/(1-x)*d/dx. - Peter Bala, Jul 02 2012
a(n) = A001303(-3-n) for all n in Z. - Michael Somos, Sep 04 2017
a(n) = Sum_{k=1..n} Sum_{i=1..n} i * C(k+2,k-1). - Wesley Ivan Hurt, Sep 21 2017
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 16*Pi^2/3 - 464/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 260/9 - 4*Pi^2/3 - 64*log(2)/3. (End)
a(n) = Sum_{0<=i<=j<=k<=n} i*j*k. - Robert FERREOL, May 25 2022

Extensions

Initial zero added by N. J. A. Sloane, Jan 21 2008
Name corrected by Nathaniel Johnston, Apr 30 2011