A129825
a(n) = n!*Bernoulli(n-1), n > 2; a(0)=0, a(1)=1, a(2)=1.
Original entry on oeis.org
0, 1, 1, 1, 0, -4, 0, 120, 0, -12096, 0, 3024000, 0, -1576143360, 0, 1525620096000, 0, -2522591034163200, 0, 6686974460694528000, 0, -27033456071346536448000, 0, 160078872315904478576640000, 0, -1342964491649083924630732800000, 0, 15522270327163593186886877184000000, 0
Offset: 0
Equals second left hand column of
A161739 (RSEG2 triangle).
Cf.
A094310 [T(n,k) = n!/k],
A008277 [S2(n,k); Stirling numbers of the second kind],
A028246 [Worpitzky's triangle] and
A008955 [CFN triangle].
-
[n le 2 select Floor((n+1)/2) else Factorial(n)*Bernoulli(n-1): n in [0..40]]; // G. C. Greubel, Apr 26 2024
-
A129825 := proc(n) if n <= 1 then n; elif n = 2 then 1; else n!*bernoulli(n-1) ; fi; end: # R. J. Mathar, May 21 2009
-
a[n_] := n!*BernoulliB[n-1]; a[0]=0; a[2]=1; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Mar 04 2013 *)
-
[(n+1)//2 if n <3 else factorial(n)*bernoulli(n-1) for n in range(41)] # G. C. Greubel, Apr 26 2024
A129814
a(n) = Bernoulli(n) * (n+1)!.
Original entry on oeis.org
1, -1, 1, 0, -4, 0, 120, 0, -12096, 0, 3024000, 0, -1576143360, 0, 1525620096000, 0, -2522591034163200, 0, 6686974460694528000, 0, -27033456071346536448000, 0, 160078872315904478576640000, 0, -1342964491649083924630732800000, 0
Offset: 0
-
[Bernoulli(n) * Factorial(n+1): n in [0..100]]; // Vincenzo Librandi, Mar 29 2011
-
Table[BernoulliB[n](n+1)!,{n,0,30}] (* Harvey P. Dale, Jan 18 2013 *)
Table[SeriesCoefficient[-2 x - PolyGamma[2, 1/x] / x^2, {x, 0, n}, Assumptions -> x > 0] n!, {n, 0, 30}] (* Vladimir Reshetnikov, Apr 24 2013 *)
-
{for(n=0, 25, print1(bernfrac(n)*(n+1)!, ","))}
-
{a(n) = if( n<0, 0, (n + 1)! * bernfrac( n))} /* Michael Somos, Mar 29 2011 */
A263445
a(n) = (2n+1)*(n+1)!*Bernoulli(2n).
Original entry on oeis.org
1, 1, -1, 4, -36, 600, -16584, 705600, -43751232, 3790108800, -443539877760, 68218849036800, -13478425925184000, 3355402067989171200, -1035218714714606822400, 390189256983139461120000, -177430554756972746695065600, 96269372301568677170319360000
Offset: 0
-
seq((2*n+1)*(n+1)!*bernoulli(2*n), n=0..50); # Robert Israel, Oct 18 2015
-
Table[(2n + 1) (n + 1)! BernoulliB[2n], {n, 0, 17}]
-
vector(30, n, n--; (2*n+1)*(n+1)!*bernfrac(2*n)) \\ Altug Alkan, Oct 18 2015
-
from math import factorial
from sympy import bernoulli
def A263445(n): return (2*n+1)*factorial(n+1)*bernoulli(2*n) # Chai Wah Wu, May 18 2022
A168136
a(n) = Bernoulli(2n)*(2n+1)!/n!.
Original entry on oeis.org
1, 1, -2, 20, -504, 25200, -2189088, 302702400, -62564261760, 18427508985600, -7449695786856960, 4010313259477324800, -2803674333549374208000, 2492728196309155284480000, -2768630339381333070099456000
Offset: 0
-
[Bernoulli(2*n)*Factorial(2*n+1)/Factorial(n): n in [0..20]]; // Vincenzo Librandi, Jul 14 2016
-
Table[BernoulliB[2*n]*(2*n+1)!/n!, {n, 0, 20}]
-
a(n)=bernfrac(2*n)*(2*n+1)!/n!
A347425
a(n) = Bernoulli(2*n) * (2*n+1)! if 2*n+1 is a prime, otherwise a(n) = Bernoulli(2*n) * (2*n)!.
Original entry on oeis.org
1, 1, -4, 120, -1344, 3024000, -1576143360, 101708006400, -2522591034163200, 6686974460694528000, -1287307431968882688000, 160078872315904478576640000, -53718579665963356985229312000, 574898901006059006921736192000000, -241364461951740682229320388129587200000
Offset: 0
Bernoulli(2*n) * (2*n)! = [ 1, 1/3, -4/5, 120/7, -1344, 3024000/11, -1576143360/13, 101708006400, -2522591034163200/17, 6686974460694528000/19, ... ].
-
a[n_] := If[PrimeQ[2 n + 1], BernoulliB[2 n] (2 n + 1)!, BernoulliB[2 n] (2 n)!]; Table[a[n], {n, 0, 14}]
Table[Numerator[BernoulliB[2 n] (2 n)!], {n, 0, 14}]
Table[Numerator[(2 n)!^2 SeriesCoefficient[x Coth[x/2]/2, {x, 0, 2 n}]], {n, 0, 14}]
b[0] = 1; b[n_] := b[n] = -Sum[Binomial[n, k]^2 k! b[n - k]/(k + 1), {k, 1, n}]; a[n_] := Numerator[b[2 n]]; Table[a[n], {n, 0, 14}]
-
a(n) = numerator(bernfrac(2*n)*(2*n)!); \\ Michel Marcus, Sep 01 2021
Showing 1-5 of 5 results.
Comments