A129825
a(n) = n!*Bernoulli(n-1), n > 2; a(0)=0, a(1)=1, a(2)=1.
Original entry on oeis.org
0, 1, 1, 1, 0, -4, 0, 120, 0, -12096, 0, 3024000, 0, -1576143360, 0, 1525620096000, 0, -2522591034163200, 0, 6686974460694528000, 0, -27033456071346536448000, 0, 160078872315904478576640000, 0, -1342964491649083924630732800000, 0, 15522270327163593186886877184000000, 0
Offset: 0
Equals second left hand column of
A161739 (RSEG2 triangle).
Cf.
A094310 [T(n,k) = n!/k],
A008277 [S2(n,k); Stirling numbers of the second kind],
A028246 [Worpitzky's triangle] and
A008955 [CFN triangle].
-
[n le 2 select Floor((n+1)/2) else Factorial(n)*Bernoulli(n-1): n in [0..40]]; // G. C. Greubel, Apr 26 2024
-
A129825 := proc(n) if n <= 1 then n; elif n = 2 then 1; else n!*bernoulli(n-1) ; fi; end: # R. J. Mathar, May 21 2009
-
a[n_] := n!*BernoulliB[n-1]; a[0]=0; a[2]=1; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Mar 04 2013 *)
-
[(n+1)//2 if n <3 else factorial(n)*bernoulli(n-1) for n in range(41)] # G. C. Greubel, Apr 26 2024
A001332
a(n) = Bernoulli(2*n) * (2*n + 1)!.
Original entry on oeis.org
1, 1, -4, 120, -12096, 3024000, -1576143360, 1525620096000, -2522591034163200, 6686974460694528000, -27033456071346536448000, 160078872315904478576640000, -1342964491649083924630732800000, 15522270327163593186886877184000000
Offset: 0
- G. S. Kazandzidis, On a Matrix and a Class of Polynomials, Bulletin de la Société Mathématique de Grèce, Nouvelle Série - Vol. 6 I, Fasc. 1, (1965), pp. 105-126.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Table[BernoulliB[2*n]*(2*n + 1)!, {n, 0, 20}] (* T. D. Noe, Jun 28 2012 *)
-
{a(n) = if( n<0, 0, (2*n + 1)! * bernfrac( 2*n))} /* Michael Somos, Oct 08 2003 */
A191578
Triangle read by rows, based on expansion of (x^2/(exp(x)-1))^m = x^m+sum(n>m T(n,m)*m!/((n-m)!*n!)*x^n).
Original entry on oeis.org
1, -1, 1, 1, -3, 1, 0, 10, -6, 1, -4, -30, 40, -10, 1, 0, 36, -270, 110, -15, 1, 120, 420, 1596, -1260, 245, -21, 1, 0, -2400, -5040, 14056, -4200, 476, -28, 1, -12096, -30240, -46080, -136080, 72576, -11340, 840, -36, 1, 0, 423360, 756000, 795600, -1197000, 276192, -26460, 1380, -45, 1, 3024000, 5987520, 4213440, 6098400, 17087400, -6652800, 857472, -55440, 2145, -55, 1, 0, -163296000, -251475840, -220651200, -158004000, 151169040, -27941760, 2297592, -106920, 3190, -66, 1
Offset: 1
1,
-1,1,
1,-3,1,
0,10,-6,1,
-4,-30,40,-10,1,
0,36,-270,110,-15,1,
120,420,1596,-1260,245,-21,1
-
A191578 := proc(n, m)
if m=n then
1;
else
add(combinat[stirling2] (n-m, k) *k! *combinat[stirling1](m+k, m)/(m+k)!, k=1..n-m) ;
%*n! ;
end if;
end proc: # R. J. Mathar, Jun 14 2013
-
t[n_, m_] := n!*Sum[ (k!*StirlingS1[m+k, m]*StirlingS2[n-m, k])/(m+k)!, {k, 1, n-m}]; t[n_, n_] = 1; Table[t[n, m], {n, 1, 12}, {m, 1, n}] // Flatten (* Jean-François Alcover, Feb 22 2013 *)
-
T(n,m):=n!*sum((k!*stirling1(m+k,m)*stirling2(n-m,k))/(m+k)!,k,0,n-m); /* Vladimir Kruchinin, Jun 14 2013 */
-
T(n,m):=n!*(n-m)!/m!*sum(k!*binomial(m+k-1,m-1)*sum(((-1)^j*stirling2(n-m+j,j))/((k-j)!*(n-m+j)!),j,0,k),k,0,n-m); /* Vladimir Kruchinin, Jun 14 2013 */
A273198
a(n) = T(n,2) with T(n, m) = (m*n+1)! * Sum_{k=0..n}( 1/(m*k+1) * Sum_{j=0..m*k} (-1)^j*C(k,j)*j^(m*n) ).
Original entry on oeis.org
1, -2, 296, -327984, 1363872384, -15198541159680, 372495898187043840, -17616182020373076940800, 1464370216956293433318604800, -199499758936277018742988067635200, 42181903584776412718275835664105472000, -13251216132203374725100642797337549799424000
Offset: 0
-
Flatten[{1, Table[(2*n + 1)! * Sum[1/(2*k + 1)*Sum[(-1)^j*Binomial[k, j]*j^(2*n), {j, 0, 2*k}], {k, 0, n}], {n, 1, 10}]}] (* Vaclav Kotesovec, Jun 26 2016 *)
-
def T(n, m): return factorial(m*n+1) * sum(1/(m*k+1)*sum((-1)^j*binomial(k,j)* j^(m*n) for j in (0..m*k)) for k in (0..n))
def a(n): return T(n, 2)
print([a(n) for n in (0..12)])
A356545
Triangle read by rows. T(n, k) are the coefficients of polynomials p_n(x) based on the Eulerian numbers of first order representing the Bernoulli numbers as B_n = p_n(1) / (n + 1)!.
Original entry on oeis.org
1, 1, 0, 2, -1, 0, 6, -8, 2, 0, 24, -66, 44, -6, 0, 120, -624, 792, -312, 24, 0, 720, -6840, 14496, -10872, 2736, -120, 0, 5040, -86400, 285840, -347904, 171504, -28800, 720, 0, 40320, -1244880, 6181920, -11245680, 8996544, -3090960, 355680, -5040, 0
Offset: 0
The table T(n, k) of the coefficients, sorted in ascending order, starts:
[0] 1;
[1] 1, 0;
[2] 2, -1, 0;
[3] 6, -8, 2, 0;
[4] 24, -66, 44, -6, 0;
[5] 120, -624, 792, -312, 24, 0;
[6] 720, -6840, 14496, -10872, 2736, -120, 0;
[7] 5040, -86400, 285840, -347904, 171504, -28800, 720, 0;
[8] 40320, -1244880, 6181920, -11245680, 8996544, -3090960, 355680, -5040, 0;
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 268. (Since the thirty-fourth printing, Jan. 2022, with B(1) = 1/2.)
- Ira Gessel, Eulerian number identity, MathOverflow, Apr 2019.
- Peter Luschny, How are the Eulerian numbers of the first-order related to the Eulerian numbers of the second-order?, MathOverflow, Feb. 2021.
- Peter Luschny, Eulerian polynomials.
- Oskar Schlömilch, Ueber die Bernoulli'sche Funktion und deren Gebrauch bei der Entwickelung halbconvergenter Reihen, Zeitschrift fuer Mathematik und Pysik, vol. 1 (1856), p. 193-211.
- Julius Worpitsky, Studien über die Bernoullischen und Eulerschen Zahlen, Journal für die reine und angewandte Mathematik (Crelle), 94 (1883), 203-232. See page 22, first formula.
-
E1 := proc(n, k) combinat:-eulerian1(n, k) end:
p := (n, x) -> add(E1(n, k)*k!*(n - k)!*(-x)^k, k = 0..n):
seq(print(seq(coeff(p(n, x), x, k), k=0..n)), n = 0..8);
seq(p(n, 1)/(n + 1)!, n = 0..14); # check the Bernoulli representation
-
T[n_, k_] := k! * (n-k)! * Sum[(-1)^(k-j) * (k-j+1)^n * Binomial[n+1, j], {j, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // TableForm
(* Diagonals: *)
d[n_, k_] := k! * (n - k)! * Sum[(-1)^(n-k-j)*(n - j - k + 1)^n * Binomial[n + 1, j], {j, 0, n - k}];
A137777
Triangular sequence of coefficients from the expansion of the derivative of the Bernoulli polynomial function: p(x,t) = t*exp(x*t)/(exp(t)-1); q(x,t) = p'(x,t) = dp(x,t)/dt.
Original entry on oeis.org
2, -2, 4, 2, -12, 12, 0, 24, -72, 48, -8, 0, 240, -480, 240, 0, -240, 0, 2400, -3600, 1440, 240, 0, -5040, 0, 25200, -30240, 10080, 0, 13440, 0, -94080, 0, 282240, -282240, 80640, -24192, 0, 483840, 0, -1693440, 0, 3386880, -2903040, 725760, 0, -2177280, 0, 14515200, 0, -30481920, 0, 43545600, -32659200
Offset: 0
{2},
{-2, 4},
{2, -12, 12},
{0,24, -72, 48},
{-8, 0, 240, -480, 240},
{0, -240, 0, 2400, -3600, 1440},
{240, 0, -5040, 0, 25200, -30240, 10080},
{0, 13440, 0, -94080, 0, 282240, -282240, 80640},
{-24192, 0, 483840, 0, -1693440, 0, 3386880, -2903040, 725760},
{0, -2177280, 0, 14515200, 0, -30481920, 0, 43545600, -32659200, 7257600},
{6048000, 0, -119750400, 0, 399168000, 0, -558835200, 0, 598752000, -399168000, 79833600},
{0, 798336000, 0, -5269017600, 0, 10538035200, 0, -10538035200, 0, 8781696000, -5269017600, 958003200}
-
seq(seq(coeff(bernoulli(k,x)*2*(k+1)!,x,i),i=0..k),k=1..10); # Peter Luschny, Apr 23 2009
-
Clear[p, b, a]; p[t_] = D[t^2*Exp[x*t]/(Exp[t]-1),{t,1}];
a = Table[CoefficientList[2*n!^2*SeriesCoefficient
[Series[p[t],{t,0,30}],n],x],{n,0,10}]; Flatten[a]
Table[CoefficientList[2 BernoulliB[k,x] Gamma[2+k],x],{k,0,10}]//Flatten
A273196
a(n) = numerator of T(n, 2) with T(n, m) = Sum_{k=0..n}( 1/(m*k+1) * Sum_{j=0..m*k} (-1)^j*C(k,j)*j^(m*n) ).
Original entry on oeis.org
1, -1, 37, -6833, 56377, -439772603, 27217772209, -202070742359, 80837575181815013, -155957202651688954367, 1770963292969902374951, -16092436217742770647634507, 2975968726866580246152132993, -963399772945511487665759472653, 3891037048609240492066339458106680163
Offset: 0
-
Table[Function[{n, m}, If[n == 0, 1, Numerator@ Sum[1/(m k + 1) Sum[(-1)^j Binomial[k, j] j^(m n), {j, 0, m k}], {k, 0, n}]]][n, 2], {n, 0, 14}] (* Michael De Vlieger, Jun 26 2016 *)
-
def T(n, m): return sum(1/(m*k+1)*sum((-1)^j*binomial(k,j)*j^(m*n) for j in (0..m*k)) for k in (0..n))
def a(n): return T(n, 2).numerator()
print([a(n) for n in (0..14)])
A273197
a(n) = denominator of T(n, 2) with T(n, m) = Sum_{k=0..n}( 1/(m*k+1) * Sum_{j=0..m*k} (-1)^j*C(k,j)*j^(m*n) ).
Original entry on oeis.org
1, 3, 15, 105, 15, 1155, 455, 15, 19635, 95095, 2145, 31395, 7735, 2805, 10818885, 50115065, 3315, 596505, 80925845, 3795, 18515805, 221847535, 2211105, 204920500785, 1453336885, 148335, 95055765, 287558635, 27897511785, 397299047145, 5613813089885, 8897205
Offset: 0
T(n,1)*(1*n+1)! =
A129814(n) for all n>=0.
T(n,2)*(2*n+1)! =
A273198(n) for all n>=0.
-
Table[Function[{n, m}, If[n == 0, 1, Denominator@ Sum[1/(m k + 1) Sum[(-1)^j Binomial[k, j] j^(m n), {j, 0, m k}], {k, 0, n}]]][n, 2], {n, 0, 31}] (* Michael De Vlieger, Jun 26 2016 *)
-
def T(n, m): return sum(1/(m*k+1)*sum((-1)^j*binomial(k,j)*j^(m*n) for j in (0..m*k)) for k in (0..n))
def a(n): return T(n, 2).denominator()
print([a(n) for n in (0..31)])
Showing 1-8 of 8 results.
Comments