cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A008978 a(n) = (5*n)!/(n!)^5.

Original entry on oeis.org

1, 120, 113400, 168168000, 305540235000, 623360743125120, 1370874167589326400, 3177459078523411968000, 7656714453153197981835000, 19010638202652030712978200000, 48334775757901219912115629238400, 125285878026462826569986857692288000
Offset: 0

Views

Author

Keywords

Comments

Number of paths of length 5n in Z^5 from (0,0,0,0,0) to (n,n,n,n,n).

Crossrefs

Programs

Formula

a(n) ~ 5^(5*n+1/2) / (4 * Pi^2 * n^2). - Vaclav Kotesovec, Mar 07 2014
From Peter Bala, Jul 12 2016: (Start)
a(n) = binomial(2*n,n)*binomial(3*n,n)*binomial(4*n,n)*binomial(5*n,n) = ( [x^n](1 + x)^(2*n) ) * ( [x^n](1 + x)^(3*n) ) * ( [x^n](1 + x)^(4*n) ) * ( [x^n](1 + x)^(5*n) ) = [x^n]( F(x)^(120*n) ), where F(x) = 1 + x + 353*x^2 + 318986*x^3 + 408941594*x^4 + 633438203535*x^5 + 1105336091531052*x^6 + ... appears to have integer coefficients. For similar results see A000897, A002894, A002897, A006480, A008977, A186420 and A188662. (End)
From Peter Bala, Jul 17 2016: (Start)
a(n) = Sum_{k = 0..4*n} (-1)^k*binomial(5*n,n + k)*binomial(n + k,k)^5.
a(n) = Sum_{k = 0..5*n} (-1)^(n+k)*binomial(5*n,k)*binomial(n + k,k)^5. (End)
From Ilya Gutkovskiy, Nov 23 2017: (Start)
O.g.f.: 4F3(1/5,2/5,3/5,4/5; 1,1,1; 3125*x).
E.g.f.: 4F4(1/5,2/5,3/5,4/5; 1,1,1,1; 3125*x). (End)
From Peter Bala, Feb 16 2020: (Start)
a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k - apply Mestrovic, equation 39, p. 12.
a(n) = [(x*y*z*u)^n] (1 + x + y + z + u )^(5*n). (End)
a(n) = 120*A322252(n). - R. J. Mathar, Jun 21 2023
a(n) = a(n-1)*5*(5*n - 1)*(5*n - 2)*(5*n - 3)*(5*n - 4)/n^4. - Neven Sajko, Jul 21 2023

A001450 a(n) = binomial(5*n,2*n).

Original entry on oeis.org

1, 10, 210, 5005, 125970, 3268760, 86493225, 2319959400, 62852101650, 1715884494940, 47129212243960, 1300853625660225, 36052387482172425, 1002596421878664480, 27963143931814663880, 781879430625942976880, 21910242651571684460050, 615167304833936727234180
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(5*n, 2*n): n in [0..20]]; // Vincenzo Librandi, Aug 07 2014
    
  • Maple
    f := n->(5*n)!/((3*n)!*(2*n)!);
  • Mathematica
    Table[Hypergeometric2F1[-3n,-2n,1,1],{n,0,60}] (* John M. Campbell, Jul 15 2011 *)
    Table[Binomial[5n,2n],{n,0,20}] (* Harvey P. Dale, Nov 09 2011 *)
  • PARI
    a(n) = binomial(5*n,2*n) \\ Altug Alkan, Oct 06 2015

Formula

a(n) = (5*n)!/((3*n)!*(2*n)!).
a(n) = 2F1[-3n,-2n,1,1] (see Mathematica code below). - John M. Campbell, Jul 15 2011
G.f.: hypergeom([1/5, 2/5, 3/5, 4/5], [1/3, 1/2, 2/3], (3125/108)*x). - Robert Israel, Aug 07 2014
From Peter Bala, Oct 05 2015: (Start)
a(n) = [x^n] ( (1 + x)*C(x) )^(5*n), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108.
a(n) = 5*A259550(n) for n >= 1.
exp( (1/5) * Sum_{n >= 1} a(n)*x^n/n ) = 1 + 2*x + 23*x^2 + 377*x^3 + ... is the o.g.f. for the sequence of Duchon numbers A060941. (End)
a(n) = [x^(2*n)] 1/(1 - x)^(3*n+1). - Ilya Gutkovskiy, Oct 10 2017
D-finite with recurrence 6*n*(3*n-1)*(2*n-1)*(3*n-2)*a(n) -5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Feb 08 2021
a(n) = Sum_{k = 0..2*n} binomial(3*n+k-1, k). Cf. A066802. - Peter Bala, Jun 04 2024
Right-hand side of the identity Sum_{k = 0..2*n} (-1)^k*binomial(-n, k)* binomial(4*n-k, 2*n-k) = binomial(5*n, 2*n). Compare with the identity Sum_{k = 0..n} (-1)^k*binomial(n, k)*binomial(4*n-k, 2*n-k) = binomial(3*n, n). - Peter Bala, Jun 05 2024
From Karol A. Penson, May 07 2025: (Start)
G.f. denoted by h(x) satisfies the following algebraic equation of order 10:
8 - 3125*x + 20*(-13 + 3125*x)*h(x) - 45*(-74 + 9375*x)*h(x)^2 + 5*(-4023 + 175000*x)*h(x)^2 + 5*(-4023 + 175000*x)*h(x)^3 + 25*(1809 + 53125*x)*h(x)^4 + (34375*x - 738)*(3125*x - 108)*h(x)^5 + 15*(3125*x + 297)*(3125*x - 108)*h(x)^6 + 5*(3125*x - 108)^2*h(x)^7 + 135*(3125*x - 108)^2*h(x)^8 + (3125*x - 108)^3*h(x)^10=0.
a(n) = Integral_{x=0..3125/108} x^n*W(x)*dx, n>=0, where W(x) = W1(x)+W2(x)+W3(x)+W4(x) can be expressed with four generalized hypergeometric functions of type 4F3:
W1(x) = sqrt(5)*csc((2*Pi)/5)*sin((3*Pi)/10)*hypergeom([1/5, 8/15, 7/10, 13/15], [2/5, 3/5, 4/5], (108*x)/3125)/(10*Pi*x^(4/5)),
W2(x) = sqrt(5)*sec((3*Pi)/10)*sin(Pi/10)*hypergeom([2/5, 11/15, 9/10, 16/15], [3/5, 4/5, 6/5], (108*x)/3125)/(50*Pi*x^(3/5)),
W3(x) = sqrt(5)*sec((3*Pi)/10)*sin(Pi/10)*hypergeom([3/5, 14/15, 11/10, 19/15], [4/5, 6/5, 7/5], (108*x)/3125)/(125*Pi*x^(2/5)), and
W4(x) = (7*sqrt(5)*csc((2*Pi)/5)*sin((3*Pi)/10)*hypergeom([4/5, 17/15, 13/10, 22/15], [6/5, 7/5, 8/5], (108*x)/3125))/(1250*Pi*x^(1/5)).
Using the formula for a(n) only, W(x) can be shown to be a positive function. It is singular at x=0 and at x=3125/108. This integral representation is unique since W(x) is the solution of the Hausdorff moment problem. (End)
From Peter Bala, Jun 21 2025: (Start)
a(n) = [x^(3*n)] 1/(1 - x)^(2*n+1).
a(n) = Sum_{k = 0..3*n} binomial(2*n+k-1, k). (End)

A361673 Constant term in the expansion of (1 + x*y + y*z + z*x + 1/(x*y*z))^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 61, 361, 1261, 3361, 7561, 34021, 235621, 1294921, 5482621, 19039021, 65345281, 286147681, 1511480881, 7688794681, 34337600281, 138221512741, 554603041441, 2454508134541, 11874549049441, 57412094595241, 261925516443361, 1134301869703861
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2023

Keywords

Comments

Also constant term in the expansion of (1 + x^2 + y^2 + z^2 + 1/(x*y*z))^n.

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[1/(k!^3 * (2*k)! * (n-5*k)!), {k,0,n/5}], {n,0,20}] (* Vaclav Kotesovec, Mar 22 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n\5, 1/(k!^3*(2*k)!*(n-5*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/5)} 1/(k!^3 * (2*k)! * (n-5*k)!) = Sum_{k=0..floor(n/5)} binomial(n,5*k) * A001460(k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: 2*n^3*(2*n - 5)*a(n) = 2*(10*n^4 - 40*n^3 + 50*n^2 - 30*n + 7)*a(n-1) - 10*(n-1)*(4*n^3 - 18*n^2 + 26*n - 13)*a(n-2) + 40*(n-2)^3*(n-1)*a(n-3) - 10*(n-3)*(n-2)*(n-1)*(2*n - 5)*a(n-4) + 3129*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5).
a(n) ~ sqrt(c) * (1 + 5/2^(2/5))^n / (Pi^(3/2) * n^(3/2)), where c = 3.154712586460560795509193778252140601572145506226776094640234924884123818... is the real root of the equation -30634915689 + 95407210000*c - 127160000000*c^2 + 79846400000*c^3 - 25600000000*c^4 + 3276800000*c^5 = 0. (End)
Showing 1-3 of 3 results.