A001567 Fermat pseudoprimes to base 2, also called Sarrus numbers or Poulet numbers.
341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821, 3277, 4033, 4369, 4371, 4681, 5461, 6601, 7957, 8321, 8481, 8911, 10261, 10585, 11305, 12801, 13741, 13747, 13981, 14491, 15709, 15841, 16705, 18705, 18721, 19951, 23001, 23377, 25761, 29341
Offset: 1
References
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, p. 80.
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section A12, pp. 44-50.
- George P. Loweke, The Lore of Prime Numbers. New York: Vantage Press (1982), p. 22.
- Øystein Ore, Number Theory and Its History, McGraw-Hill, 1948.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 88-92.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 145.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..101629 [The pseudoprimes up to 10^12, from Richard Pinch's web site - see links below]
- Jonathan Bayless and Paul Kinlaw, Explicit Bounds for the Sum of Reciprocals of Pseudoprimes and Carmichael Numbers, Journal of Integer Sequences, Vol. 20 (2017), Article 17.6.4.
- Jens Bernheiden, Pseudoprimes (Text in German).
- John Brillhart, N. J. A. Sloane, J. D. Swift, Correspondence, 1972.
- Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
- Paul Erdős, On the converse of Fermat's theorem, The American Mathematical Monthly, Vol. 56, No. 9 (1949), pp. 623-624; alternative link.
- Paul Erdős, On almost primes, Amer. Math. Monthly, Vol. 57, No. 6 (1950), pp. 404-407; alternative link.
- Jan Feitsma, The pseudoprimes below 2^64.
- William Galway, Tables of pseudoprimes and related data [Includes a file with pseudoprimes up to 2^64.]
- Richard K. Guy, The strong law of small numbers. Amer. Math. Monthly, Vol. 95, No. 8 (1988), pp. 697-712. [Annotated scanned copy]
- Paul Kinlaw, The reciprocal sums of pseudoprimes and Carmichael numbers, Mathematics of Computation (2023).
- D. H. Lehmer, Guide to Tables in the Theory of Numbers, Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 48.
- D. H. Lehmer, Errata for Poulet's table, Math. Comp., Vol. 25, No. 116 (1971), pp. 944-945.
- D. H. Lehmer, Errata for Poulet's table. [annotated scanned copy]
- Gérard P. Michon, Pseudoprimes.
- J. C. P. Miller, On factorization, with a suggested new approach, Math. Comp., Vol. 29, No. 129 (1975), pp. 155-172. - _Felix Fröhlich_, Aug 18 2014
- Robert Morris, Some observations on the converse of Fermat's theorem, unpublished memorandum, Oct 03 1973.
- Richard Pinch, Pseudoprimes.
- P. A. Piza, Fermat Coefficients, Mathematics Magazine, Vol. 27, No. 3 (1954), pp. 141-146.
- Carl Pomerance & N. J. A. Sloane, Correspondence, 1991.
- Paul Poulet, Tables des nombres composés vérifiant le théorème de Fermat pour le module 2 jusqu'à 100.000.000, Sphinx (Brussels), Vol. 8 (1938), pp. 42-45. [annotated scanned copy]
- Fred Richman, Primality testing with Fermat's little theorem.
- Andrzej Rotkiewicz, Sur les nombres pseudopremiers de la forme MpMq, Elemente der Mathematik, Vol. 20 (1965), pp. 108-109.
- Waclaw Sierpiński, Remarque sur une hypothèse des Chinois concernant les nombres (2^n-2)/n, Colloquium Mathematicum, Vol. 1 (1947), p. 9.
- Waclaw Sierpiński, Elementary Theory of Numbers, Państ. Wydaw. Nauk., Warszawa, 1964, p. 215.
- Jianing Song, Notes on Fermat Pseudoprimes.
- Eric Weisstein's World of Mathematics, Chinese Hypothesis, Fermat Pseudoprime, Poulet Number, and Pseudoprime.
- Wikipedia, Chinese hypothesis and Pseudoprime.
- Index entries for sequences related to pseudoprimes
Crossrefs
Programs
-
Magma
[n: n in [3..3*10^4 by 2] | IsOne(Modexp(2,n-1,n)) and not IsPrime(n)]; // Bruno Berselli, Jan 17 2013
-
Maple
select(t -> not isprime(t) and 2 &^(t-1) mod t = 1, [seq(i,i=3..10^5,2)]); # Robert Israel, Feb 18 2016
-
Mathematica
Select[Range[3,30000,2], ! PrimeQ[ # ] && PowerMod[2, (# - 1), # ] == 1 &] (* Farideh Firoozbakht, Sep 15 2006 *)
-
PARI
q=1;vector(50,i,until( !isprime(q) & (1<<(q-1)-1)%q == 0, q+=2);q) \\ M. F. Hasler, May 04 2007
-
PARI
is_A001567(n)={Mod(2,n)^(n-1)==1 && !isprime(n) && n>1} \\ M. F. Hasler, Oct 07 2012, updated to current PARI syntax and to exclude even pseudoprimes on Mar 01 2019
Formula
Sum_{n>=1} 1/a(n) is in the interval (0.015260, 33) (Bayless and Kinlaw, 2017). The upper bound was reduced to 0.0911 by Kinlaw (2023). - Amiram Eldar, Oct 15 2020, Feb 24 2024
Extensions
More terms from David W. Wilson, Aug 15 1996
Replacement of broken geocities link by Jason G. Wurtzel, Sep 05 2010
"Poulet numbers" added to name by Joerg Arndt, Aug 18 2014
Comments