A001655 Fibonomial coefficients: a(n) = F(n+1) * F(n+2) * F(n+3)/2, where F() = Fibonacci numbers A000045.
1, 3, 15, 60, 260, 1092, 4641, 19635, 83215, 352440, 1493064, 6324552, 26791505, 113490195, 480752895, 2036500788, 8626757644, 36543528780, 154800876945, 655747029795, 2777789007071, 11766903040368, 49845401197200, 211148507782800, 894439432403425
Offset: 0
Examples
G.f. = 1 + 3*x + 15*x^2 + 60*x^3 + 260*x^4 + 1092*x^5 + 4641*x^6 + ...
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 74.
- Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers cubed, Fib. Q. 58:5 (2020) 128-134.
- Milan Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- Ronald Orozco López, Generating Functions of Generalized Simplicial Polytopic Numbers and (s,t)-Derivatives of Partial Theta Function, arXiv:2408.08943 [math.CO], 2024. See p. 13.
- Ronald Orozco López, Simplicial d-Polytopic Numbers Defined on Generalized Fibonacci Polynomials, arXiv:2501.11490 [math.CO], 2025. See p. 10.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- David Treeby, Further Physical Derivations of Fibonacci Summations, Fibonacci Quart. 54 (2016), no. 4, 327-334.
- Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1).
Crossrefs
Programs
-
Magma
[Fibonacci(n+3)*Fibonacci(n+2)*Fibonacci(n+1)/2: n in [0..30]]; // Vincenzo Librandi, May 09 2016
-
Maple
A001655:=1/(z**2-z-1)/(z**2+4*z-1); # Simon Plouffe in his 1992 dissertation.
-
Mathematica
Table[(Fibonacci[n+3]*Fibonacci[n+2]*Fibonacci[n+1])/2, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *) LinearRecurrence[{3, 6, -3, -1}, {1, 3, 15, 60}, 25] (* Jean-François Alcover, Sep 23 2017 *)
-
PARI
b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j)); vector(20, n, b(n-1, 3)) \\ Joerg Arndt, May 08 2016
Formula
G.f.: 1/(1-3*x-6*x^2+3*x^3+x^4) = 1/((1+x-x^2)*(1-4*x-x^2)) (see Comments to A055870).
a(n) = A010048(n+3, 3) = fibonomial(n+3, 3).
a(n) = (1/2) * A065563(n).
a(n) = 4*a(n-1) + a(n-2) + ((-1)^n)*F(n+1), n >= 2; a(0)=1, a(1)=3.
a(n) = (F(n+3)^3 - F(n+2)^3 - F(n+1)^3)/6. - Gary Detlefs, Dec 24 2010
a(n-1) = Sum_{k=0..n} F(k+1)*F(k)^2, n >= 1. - Wolfdieter Lang, Aug 01 2012
From Wolfdieter Lang, Aug 09 2012: (Start)
a(n-1)*(-1)^n = Sum_{k=0..n} (-1)^k*F(k+1)^2*F(k), n >= 1. See the link under A215037, eq. (25).
a(n) = (F(3*(n+2)) + 2*(-1)^n*F(n+2))/10, n >= 0. See the same link, eq. (32). (End)
a(n) = -a(-4-n)*(-1)^n for all n in Z. - Michael Somos, Sep 19 2014
0 = a(n)*(-a(n+1) - a(n+2)) + a(n+1)*(-3*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 19 2014
O.g.f.: exp( Sum_{n >= 1} L(n)*L(2*n)*x^n/n ), where L(n) = A000032(n) is a Lucas number. Cf. A114525, A256178. - Peter Bala, Mar 18 2015
Sum_{n>=0} (-1)^n/a(n) = 2 * A079586 - 6. - Amiram Eldar, Oct 04 2020
The formula by Gary Detlefs above is valid for all sequences of the Fibonacci type f(n) = f(n-1) + f(n-2): 3*f(n+2)*f(n+1)*f(n) = f(n+2)^3 - f(n+1)^3 - f(n)^3. - Klaus Purath, Mar 25 2021
a(n) = sqrt(Sum_{j=1..n+1} F(j)^3*F(j+1)^3). See Treeby link. - Michel Marcus, Apr 10 2022
G.f.: exp( Sum_{k>=1} F(4*k)/F(k) * x^k/k ), where F(n) = A000045(n). - Seiichi Manyama, May 07 2025
Comments