cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001656 Fibonomial coefficients.

Original entry on oeis.org

1, 5, 40, 260, 1820, 12376, 85085, 582505, 3994320, 27372840, 187628376, 1285992240, 8814405145, 60414613805, 414088493560, 2838203264876, 19453338487220, 133335155341960, 913892777190965, 6263914210945105
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 5*x + 40*x^2 + 260*x^3 + 1820*x^4 + 12376*x^5 + 85085*x^6 + ... .
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with (combinat): a:=n->1/6*fibonacci(n)*fibonacci(n+1)*fibonacci(n+2)*fibonacci(n+3): seq(a(n), n=1..18); # Zerinvary Lajos, Oct 07 2007
    A001656:=-1/(z-1)/(z**2-7*z+1)/(z**2+3*z+1); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[(Fibonacci[n+3]*Fibonacci[n+2]*Fibonacci[n+1]*Fibonacci[n])/6,{n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
    LinearRecurrence[{5,15,-15,-5,1},{1,5,40,260,1820},20] (* Vincenzo Librandi, Aug 02 2012 *)
    Times@@@Partition[Fibonacci[Range[30]],4,1]/6 (* Harvey P. Dale, Oct 13 2016 *)
  • PARI
    b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j));
    vector(20, n, b(n-1, 4))  \\ Joerg Arndt, May 08 2016

Formula

a(n) = ((4+n, 4)) (see A010048), or fibonomial(4+n, 4).
G.f.: 1/(1-5*x-15*x^2+15*x^3+5*x^4-x^5) = 1/((1-x)*(1+3*x+x^2)*(1-7*x+x^2)) (see Comments to A055870). a(n)= 7*a(n-1)-a(n-2)+((-1)^n)*fibonomial(n+2, 2), n >= 2; a(0)=1, a(1)=5; fibonomial(n+2, 2)= A001654(n+1).
a(n) = Product_{k=1..n} Fibonacci(k+4)/Fibonacci(k). - Gary Detlefs, Feb 06 2011
a(n) = (F(n+3)^2-F(n+2)^2)*F(n+3)*F(n+2)/6, where F(n) is the n-th Fibonacci number. - Gary Detlefs, Oct 12 2011
a(n) = a(-5-n) for all n in Z. - Michael Somos, Sep 19 2014
0 = a(n)*(+a(n+1) - 2*a(n+2)) + a(n+1)*(-5*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 19 2014
From Peter Bala, Mar 30 2015: (Start)
The o.g.f. A(x) = 1/(1 - 5*x - 15*x^2 + 15*x^3 + 5*x^4 - x^5). Hence A(x) (mod 25) = 1/(1 - 5*x + 10*x^2 - 10^x^3 + 5*x^4 - x^5) (mod 25) = 1/(1 - x)^5 (mod 25). It follows by Theorem 1 of Heninger et al. that A(x)^(1/5) = 1 + x + 6*x^2 + 26*x^3 + ... has integral coefficients.
Sum_{n >= 0} a(n)*x^n = exp( Sum_{n >= 1} Fibonacci(5*n)/Fibonacci(n)*x^n/n ). Cf. A084175, A099930. (End)
Sum_{n>=0} 1/a(n) = 51/2 - 15*phi, where phi is the golden ratio (A001622) (Koshy, 2022, section 3.3, p. 9). - Amiram Eldar, Jan 23 2025

Extensions

Corrected and extended by Wolfdieter Lang, Jun 27 2000
More terms from Vladimir Joseph Stephan Orlovsky, Nov 23 2009