A001752 Expansion of 1/((1+x)*(1-x)^5).
1, 4, 11, 24, 46, 80, 130, 200, 295, 420, 581, 784, 1036, 1344, 1716, 2160, 2685, 3300, 4015, 4840, 5786, 6864, 8086, 9464, 11011, 12740, 14665, 16800, 19160, 21760, 24616, 27744, 31161, 34884, 38931, 43320, 48070, 53200, 58730, 64680, 71071, 77924, 85261
Offset: 0
Examples
There are 4 binary 3 X 2 matrices with 1 unit column up to row and column permutations: [0 0] [0 0] [0 1] [0 1] [0 0] [0 1] [0 1] [0 1] [0 1] [1 1] [1 0] [1 1]. For n=5, the numbers of the octahedra, starting from the smallest size, are Te(5)=35, Te(3)=10, and Te(1)=1, the sum being 46. Te denotes the tetrahedral number A000292. - _V.J. Pohjola_, Sep 13 2012
References
- T. A. Saaty, The Minimum Number of Intersections in Complete Graphs, Proc. Natl. Acad. Sci. USA., 52 (1964), 688-690.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Dragomir Z. Djokovic, Poincaré series of some pure and mixed trace algebras of two generic matrices, arXiv:math/0609262 [math.AC], 2006. See Table 4.
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 17.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,0,5,-4,1).
Crossrefs
Programs
-
Magma
[Floor(((n+3)^2-1)*((n+3)^2-3)/48): n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
-
Maple
A001752:=n->(3*(-1)^n+93+168*n+100*n^2+24*n^3+2*n^4)/96: seq(A001752(n), n=0..50); # Wesley Ivan Hurt, Apr 01 2015
-
Mathematica
a = {1, 4}; Do[AppendTo[a, a[[n - 2]] + (n*(n + 1)*(n + 2))/6], {n, 3, 10}]; a (* Number of octahedra *) nnn = 100; Teo[n_] := (n - 1) n (n + 1)/6 Table[Sum[Teo[n - nn], {nn, 0, n - 1, 2}], {n, 1, nnn}] (* V.J. Pohjola, Sep 13 2012 *) LinearRecurrence[{4,-5,0,5,-4,1},{1,4,11,24,46,80},50] (* Harvey P. Dale, Feb 07 2019 *)
-
PARI
a(n)=if(n<0,0,((n+3)^2-1)*((n+3)^2-3)/48-if(n%2,1/16))
-
PARI
a(n)=(n^4+12*n^3+50*n^2+84*n+46)\/48 \\ Charles R Greathouse IV, Sep 13 2012
Formula
a(n) = floor(((n+3)^2 - 1)*((n+3)^2 - 3)/48).
G.f.: 1/((1+x)*(1-x)^5).
a(n) - 2*a(n-1) + a(n-2) = A002620(n+2).
a(n) + a(n-1) = A000332(n+4).
a(n) - a(n-2) = A000292(n+1).
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(k+4, 4). - Paul Barry, Jul 01 2003
a(n) = (3*(-1)^n + 93 + 168*n + 100*n^2 + 24*n^3 + 2*n^4)/96. - Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 14 2004
From Paul Barry, Apr 16 2005: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(n-2k+3, 3).
a(n) = Sum_{k=0..n} binomial(k+3, 3)*(1-(-1)^(n+k-1))/2. (End)
a(n) = A108561(n+5,n) for n > 0. - Reinhard Zumkeller, Jun 10 2005
From Wesley Ivan Hurt, Apr 01 2015: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 5*(n-4) - 4*a(n-5) + a(n-6).
a(n) = Sum_{i=0..n+3} (n+3-i) * floor(i^2/2)/2. (End)
Boas-Buck recurrence: a(n) = (1/n)*Sum_{p=0..n-1} (5 + (-1)^(n-p))*a(p), n >= 1, a(0) = 1. See the Boas-Buck comment in A158454 (here for the unsigned column k = 2 with offset 0). - Wolfdieter Lang, Aug 10 2017
E.g.f.: ((48 + 147*x + 93*x^2 + 18*x^3 + x^4)*cosh(x) + (45 + 147*x + 93*x^2 + 18*x^3 + x^4)*sinh(x))/48. - Stefano Spezia, Jan 12 2022
Extensions
Formulae corrected by Bruno Berselli, Sep 13 2012
Comments