cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001789 a(n) = binomial(n,3)*2^(n-3).

Original entry on oeis.org

1, 8, 40, 160, 560, 1792, 5376, 15360, 42240, 112640, 292864, 745472, 1863680, 4587520, 11141120, 26738688, 63504384, 149422080, 348651520, 807403520, 1857028096, 4244635648, 9646899200, 21810380800, 49073356800, 109924319232
Offset: 3

Views

Author

Keywords

Comments

Number of 3-dimensional cubes in n-dimensional hypercube. - Henry Bottomley, Apr 14 2000
With three leading zeros, this is the second binomial transform of (0,0,0,1,0,0,0,0,...). - Paul Barry, Mar 07 2003
With 3 leading zeros, binomial transform of C(n,3). - Paul Barry, Apr 10 2003
Let M=[1,0,i;0,1,0;i,0,1], i=sqrt(-1). Then 1/det(I-xM)=1/(1-2x)^4. - Paul Barry, Apr 27 2005
If X_1,X_2,...,X_n is a partition of a 2n-set X into 2-blocks then, for n>2, a(n+1) is equal to the number of (n+3)-subsets of X intersecting each X_i (i=1,2,...,n). - Milan Janjic, Jul 21 2007
With offset 0, a(n) is the number of ways to separate [n] into four non-overlapping intervals (allowed to be empty) and then choose a subset from each interval. - Geoffrey Critzer, Feb 07 2009

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 282.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([3..30], n-> Binomial(n,3)*2^(n-3)); # G. C. Greubel, Aug 27 2019
  • Haskell
    a001789 n = a007318 n 3 * 2 ^ (n - 3)
    a001789_list = 1 : zipWith (+) (map (* 2) a001789_list) (drop 2 a001788_list)
    -- Reinhard Zumkeller, Jul 12 2014
    
  • Magma
    [Binomial(n,3)*2^(n-3): n in [3..30]]; // G. C. Greubel, Aug 27 2019
    
  • Maple
    A001789:=1/(2*z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
    seq(binomial(n+3,3)*2^n,n=0..25); # Zerinvary Lajos, Jun 03 2008
  • Mathematica
    Table[Binomial[n, 3]*2^(n-3), {n,3,30}] (* Stefan Steinerberger, Apr 18 2006 *)
    LinearRecurrence[{8,-24,32,-16},{1,8,40,160},30] (* Harvey P. Dale, Feb 10 2016 *)
  • PARI
    a(n)=binomial(n,3)<<(n-3) \\ Charles R Greathouse IV, Sep 24 2015
    

Formula

a(n) = 2*a(n-1) + A001788(n-2).
For n>0, a(n+3) = 2*A082138(n) = 8*A080930(n+1).
From Paul Barry, Apr 10 2003: (Start)
G.f. (with three leading zeros): x^3/(1-2*x)^4.
With three leading zeros, a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4), a(0)=a(1)=a(2)=0, a(3)=1.
E.g.f.: (x^3/3!)*exp(2*x) (with 3 leading zeros). (End)
a(n) = Sum_{i=3..n} binomial(i,3)*binomial(n,i). Example: for n=6, a(6) = 1*20 + 4*15 + 10*6 + 20*1 = 160. - Bruno Berselli, Mar 23 2018
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=3} 1/a(n) = 6*log(2) - 3.
Sum_{n>=3} (-1)^(n+1)/a(n) = 54*log(3/2) - 21. (End)

Extensions

More terms from James Sellers, Apr 15 2000
More terms from Stefan Steinerberger, Apr 18 2006
Formula fixed by Reinhard Zumkeller, Jul 12 2014