A046657 a(n) = A002088(n)/2.
1, 2, 3, 5, 6, 9, 11, 14, 16, 21, 23, 29, 32, 36, 40, 48, 51, 60, 64, 70, 75, 86, 90, 100, 106, 115, 121, 135, 139, 154, 162, 172, 180, 192, 198, 216, 225, 237, 245, 265, 271, 292, 302, 314, 325, 348, 356, 377, 387, 403, 415, 441, 450, 470, 482
Offset: 2
Keywords
Links
- Giovanni Resta, Table of n, a(n) for n = 2..10000
- Alfred Brousseau, A Note on the Number of Fibonacci Sequences, The Fibonacci Quarterly, Vol. 10, No. 6 (1972), pp. 657-658.
Programs
-
GAP
List([2..60],n->Sum([1..n],k->Phi(k)/2)); # Muniru A Asiru, Mar 05 2018
-
Maple
a:=n->sum(numtheory[phi](k),k=1..n): seq(a(n)/2, n=2..60); # Muniru A Asiru, Mar 05 2018
-
Mathematica
Rest@ Accumulate[EulerPhi@ Range@ 56]/2 (* Michael De Vlieger, Apr 02 2017 *)
-
PARI
a(n) = sum(k=1, n, eulerphi(k))/2; \\ Michel Marcus, Apr 01 2017
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A046657(n): # based on second formula in A018805 if n == 0: return 0 c, j = 0, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2-j)*(4*A046657(k1)-1) j, k1 = j2, n//j2 return (n*(n-1)-c+j)//4 # Chai Wah Wu, Mar 25 2021
Formula
a(n) = 1/2 + Sum_{iJoseph Wheat, Feb 22 2018
Comments