cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A048613 Number of terms (excluding the first) of A002211 for which the geometric mean produces progressively better approximations to Khinchin's constant (itself).

Original entry on oeis.org

1, 2, 3, 15, 23, 26, 81, 104, 109, 111, 120, 127, 135, 136, 141, 142, 144, 145, 146, 147, 148, 5920, 5943, 8381, 8401, 89953, 91368, 267848, 353014
Offset: 1

Views

Author

Keywords

Comments

a(30) > 969679. - Hans Havermann, Jul 14 2024

Crossrefs

Programs

  • Mathematica
    cf=Rest[ContinuedFraction[Khinchin,200]];r=2;p=N[1,50];Do[p=p*cf[[i]];m=Abs[p^(1/i)-Khinchin];If[mHans Havermann, Jul 16 2024 *)

Extensions

a(28)-a(29) from Hans Havermann, Jul 14 2024

A002210 Decimal expansion of Khinchin's constant.

Original entry on oeis.org

2, 6, 8, 5, 4, 5, 2, 0, 0, 1, 0, 6, 5, 3, 0, 6, 4, 4, 5, 3, 0, 9, 7, 1, 4, 8, 3, 5, 4, 8, 1, 7, 9, 5, 6, 9, 3, 8, 2, 0, 3, 8, 2, 2, 9, 3, 9, 9, 4, 4, 6, 2, 9, 5, 3, 0, 5, 1, 1, 5, 2, 3, 4, 5, 5, 5, 7, 2, 1, 8, 8, 5, 9, 5, 3, 7, 1, 5, 2, 0, 0, 2, 8, 0, 1, 1, 4, 1, 1, 7, 4, 9, 3, 1, 8, 4, 7, 6, 9, 7, 9, 9, 5, 1, 5
Offset: 1

Views

Author

Keywords

Comments

A. Ya. Khinchin is the preferred spelling.
Carles Simó, Oct 11 2016, reports that he has computed 10^6 terms of this sequence (see links). - N. J. A. Sloane, Nov 04 2016
Named after the Soviet mathematician Aleksandr Yakovlevich Khinchin (1894 - 1959). - Amiram Eldar, Aug 19 2020

Examples

			2.685452001065306445309714835481795693820382293994462953051152345557218...
		

References

  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 59-65.
  • A. Ya. Khintchin, Continued Fractions, Groningen: Noordhoff, 1963.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 164.

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Khinchin, 100]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jun 18 2009 *)
  • Python
    from mpmath import mp, khinchin
    mp.dps = 106
    print([int(k) for k in list(str(khinchin).replace('.', ''))[:-1]]) # Indranil Ghosh, Jul 08 2017

Formula

From Amiram Eldar, Aug 19 2020: (Start)
Equal Product_{k>=1} (1 + 1/(k*(k+2)))^log_2(k).
Equals exp(A247038/log(2)). (End)

Extensions

Pari code removed by D. S. McNeil, Dec 26 2010
Spelling of Kninchin's name normalized by N. J. A. Sloane, Jul 12 2024

A054781 First position of n in continued fraction for Khinchin's constant.

Original entry on oeis.org

2, 1, 10, 47, 4, 34, 76, 65, 119, 11, 104, 27, 103, 110, 675, 80, 1080, 146, 142, 369, 246, 586, 679, 16, 1428, 1621, 1021, 1627, 64, 1342, 799, 157, 409, 506, 1406, 1783, 1445, 206, 3160, 300, 2683, 2037, 4207, 5204, 271, 523, 368, 7892, 2255, 72, 970
Offset: 1

Views

Author

Hans Havermann, May 27 2000

Keywords

Comments

Indexing of the terms is based on writing a c.f. as [a_1; a_2, a_3, ...]; the more standard convention of [a_0; a_1, a_2, ...] requires subtracting 1 from each term of the sequence.
Smallest positive integers not occurring in the first 106621 terms of the c.f. are 236, 260, 265, 279, 282, 290, 294, 297, 299, ... - Eric W. Weisstein, Oct 01 2011

Crossrefs

Cf. A224851 (= a(n) - 1).

Formula

a(n) = A224851(n) + 1.

A054866 Incrementally largest terms in the continued fraction for Khinchin's constant.

Original entry on oeis.org

2, 5, 10, 24, 90, 770, 941, 11759, 54097, 231973
Offset: 1

Views

Author

Hans Havermann, May 27 2000

Keywords

Comments

No other high water marks in the first 106621 terms of the c.f. - Eric W. Weisstein, Oct 01 2011

Crossrefs

Programs

  • Mathematica
    DeleteDuplicates[ContinuedFraction[Khinchin,10000],GreaterEqual] (* The program generates the first 8 terms of the sequence. *) (* Harvey P. Dale, Sep 11 2024 *)

A054870 Positions of the incrementally largest terms in the continued fraction for Khinchin's constant.

Original entry on oeis.org

1, 4, 11, 16, 24, 105, 1702, 2446, 18996, 60038
Offset: 1

Views

Author

Hans Havermann, May 27 2000

Keywords

Comments

No other high water marks in the first 106621 terms of the c.f. - Eric W. Weisstein, Oct 01 2011

Crossrefs

A127005 Numerators of convergents to Khinchin's constant.

Original entry on oeis.org

2, 3, 8, 43, 51, 94, 239, 333, 572, 2049, 21062, 44173, 65235, 239878, 544991, 13319662, 13864653, 54913621, 123691895, 425989306, 549681201, 975670507, 1525351708, 138257324227, 278040000162, 416297324389, 5273607892830
Offset: 1

Views

Author

Eric W. Weisstein, Jan 02 2007

Keywords

Examples

			2, 3, 8/3, 43/16, 51/19, 94/35, 239/89, 333/124, 572/213, 2049/763, ...
		

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[ContinuedFraction[Khinchin, 30]]] (* G. C. Greubel, May 30 2019 *)
  • Sage
    [continued_fraction(khinchin).convergent(n).numerator() for n in (0..30)] # G. C. Greubel, May 30 2019

A127006 Denominators of convergents to Khinchin's constant.

Original entry on oeis.org

1, 1, 3, 16, 19, 35, 89, 124, 213, 763, 7843, 16449, 24292, 89325, 202942, 4959933, 5162875, 20448558, 46059991, 158628531, 204688522, 363317053, 568005575, 51483818803, 103535643181, 155019461984, 1963769186989, 2118788648973
Offset: 1

Views

Author

Eric W. Weisstein, Jan 02 2007

Keywords

Examples

			2, 3, 8/3, 43/16, 51/19, 94/35, 239/89, 333/124, 572/213, 2049/763, ...
		

Crossrefs

Programs

  • Mathematica
    Denominator[Convergents[ContinuedFraction[Khinchin, 30]]] (* G. C. Greubel, May 30 2019 *)
  • Sage
    [continued_fraction(khinchin).convergent(n).denominator() for n in (0..30)] # G. C. Greubel, May 30 2019

A224851 First position of n in continued fraction for Khinchin's constant.

Original entry on oeis.org

1, 0, 9, 46, 3, 33, 75, 64, 118, 10, 103, 26, 102, 109, 674, 79, 1079, 145, 141, 368, 245, 585, 678, 15, 1427, 1620, 1020, 1626, 63, 1341, 798, 156, 408, 505, 1405, 1782, 1444, 205, 3159, 299, 2682, 2036, 4206, 5203, 270, 522, 367, 7891, 2254, 71, 969, 1493
Offset: 1

Views

Author

Eric W. Weisstein, Jul 22 2013

Keywords

Comments

Correctly indexed version of A054781.
Smallest positive integers not occurring in the first 106621 terms of the c.f. are 236, 260, 265, 279, 282, 290, 294, 297, 299, ... - Eric W. Weisstein, Oct 01 2011

Crossrefs

Cf. A054781(n) (= a(n) + 1).
Cf. A002211 (continued fraction of Khinchin's constant).

Formula

a(n) = A054781(n) - 1.

A317907 Number of binary places to which n-th convergent of continued fraction expansion of Khintchine's constant matches the correct value.

Original entry on oeis.org

0, -1, 5, 3, 9, 8, 12, 14, 16, 22, 25, 27, 30, 33, 39, 44, 42, 49, 52, 51, 56, 55, 64, 70, 73, 77, 81, 83, 82, 85, 88, 92, 93, 99, 101, 104, 109, 104, 111, 114, 117, 120, 122, 124, 126, 129, 131, 133, 136, 139, 138, 144, 138, 148, 151, 150, 153, 156, 158, 162
Offset: 1

Views

Author

A.H.M. Smeets, Aug 10 2018

Keywords

Comments

For number of correct decimal digits see A317908.
For the similar case of number of correct binary digits of Pi see A305879.
For the similar case of number of correct binary digits of log(2) see A317557.
The denominator of the k-th convergent obtained from a continued fraction satisfying the Gauss-Kuzmin distribution will tend to exp(k*A100199), A100199 being the inverse of Lévy's constant; the error between the k-th convergent and the constant itself tends to exp(-2*k*A100199), or in binary digits 2*k*A100199/log(2) bits after the binary point.
The sequence for quaternary digits is obtained by floor(a(n)/2), the sequence for octal digits is obtained by floor(a(n)/3), and the sequence for hexadecimal digits is obtained by floor(a(n)/4).

Examples

			   n   convergent         binary expansion       a(n)
  ==  =============  ==========================  ====
   1     2 / 1       10.0...                       0
   2     3 / 1       11.0...                      -1
   3     8 / 3       10.101010...                  5
   4    43 / 16      10.1011...                    3
   5    51 / 19      10.1010111100...              9
  oo  lim = A317906  10.101011110111100111...     --
		

Crossrefs

Programs

  • Python
    i,cf = 0,[]
    while i <= 20100:
        c = A002211(i)
        cf,i = cf+[c],i+1
    p0,p1,q0,q1,i,base = cf[0],1,1,0,1,2
    while i <= 20100:
        p0,p1,q0,q1,i = cf[i]*p0+p1,p0,cf[i]*q0+q1,q0,i+1
    a0 = p0//q0
    p0 = p0-a0*q0
    i,p0,dd = 0,p0*base,[a0]
    while i < 70000:
        d,p0,i = p0//q0,(p0%q0)*base,i+1
        dd = dd+[d]
    n,pn0,pn1,qn0,qn1 = 1,a0,1,1,0
    while n <= 20000:
        p,q = pn0,qn0
        if p//q != a0:
            print(n,"- manual!")
        else:
            i,p,di = 0,(p%q)*base,a0
            while di == dd[i]:
                i,di,p = i+1,p//q,(p%q)*base
            print(n,i-1)
        n,pn0,pn1,qn0,qn1 = n+1,cf[n]*pn0+pn1,pn0,cf[n]*qn0+qn1,qn0

Formula

Lim_{n -> oo} a(n)/n = 2*log(A086702)/log(2) = 2*A100199/log(2) = 2*A305607.

A317908 Number of decimal places to which the n-th convergent of the continued fraction expansion of Khintchine's constant matches the correct value.

Original entry on oeis.org

0, -1, 1, 2, 2, 3, 3, 4, 4, 6, 5, 8, 8, 9, 11, 13, 12, 14, 15, 16, 16, 16, 18, 21, 21, 23, 24, 24, 25, 25, 26, 27, 28, 29, 30, 30, 32, 32, 33, 33, 36, 35, 36, 37, 37, 38, 39, 39, 40, 41, 42, 42, 43, 44, 45, 44, 46, 47, 48, 48, 49, 50, 51, 54, 55, 56, 56, 58, 58, 60
Offset: 1

Views

Author

A.H.M. Smeets, Aug 10 2018

Keywords

Comments

Decimal expansion of Khintchine's constant in A002210.
For the similar case of the number of correct decimal digits of Pi see A084407.
For the similar case of the number of correct decimal digits of log(2) see A317558.
For the number of correct binary places see A317907.

Examples

			   n   convergent     decimal expansion    a(n)
  ==  =============  ====================  ====
   1     2 / 1       2.0                     0
   2     3 / 1       3.0                    -1
   3     8 / 3       2.66...                 1
   4    43 / 16      2.687...                2
   5    51 / 19      2.684...                2
   6    94 / 35      2.6857...               3
   7   239 / 89      2.6853...               3
   8   333 / 124     2.68548...              4
   9   572 / 213     2.68544...              4
  10  2049 / 763     2.6854521...            6
  oo  lim = A002210  2.685452001065306...   --
		

Crossrefs

Programs

  • Python
    i,cf = 0,[]
    while i <= 20100:
        c = A002211(i)
        cf,i = cf+[c],i+1
    p0,p1,q0,q1,i,base = cf[0],1,1,0,1,10
    while i <= 20100:
        p0,p1,q0,q1,i = cf[i]*p0+p1,p0,cf[i]*q0+q1,q0,i+1
    a0 = p0//q0
    p0 = p0-a0*q0
    i,p0,dd = 0,p0*base,[a0]
    while i < 21000:
        d,p0,i = p0//q0,(p0%q0)*base,i+1
        dd = dd+[d]
    n,pn0,pn1,qn0,qn1 = 1,a0,1,1,0
    while n <= 20000:
        p,q = pn0,qn0
        if p//q != a0:
            print(n,"- manual!")
        else:
            i,p,di = 0,(p%q)*base,a0
            while di == dd[i]:
                i,di,p = i+1,p//q,(p%q)*base
            print(n,i-1)
        n,pn0,pn1,qn0,qn1 = n+1,cf[n]*pn0+pn1,pn0,cf[n]*qn0+qn1,qn0

Formula

Limit_{n -> oo} (a(n)/n) = 2*log(A086702)/log(10) = 2*A100199/log(10) = 2*A240995.
Showing 1-10 of 13 results. Next