cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 49 results. Next

A064994 A Beatty sequence from Khinchin's constant (A002210).

Original entry on oeis.org

1, 3, 5, 6, 8, 10, 11, 13, 15, 16, 18, 20, 21, 23, 25, 26, 28, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 47, 48, 50, 52, 53, 55, 57, 58, 60, 62, 64, 65, 67, 69, 70, 72, 74, 75, 77, 79, 80, 82, 84, 85, 87, 89, 91, 92, 94, 96, 97, 99, 101, 102, 104, 106, 107, 109, 111, 112, 114
Offset: 1

Views

Author

Robert G. Wilson v, Oct 31 2001

Keywords

Crossrefs

Programs

  • Mathematica
    k = N[Khinchin, 100]; Table[ Floor[ n*(k - 1) ], {n, 1, 70} ]

A064995 A Beatty sequence from Khintchin's constant (A002210).

Original entry on oeis.org

2, 4, 7, 9, 12, 14, 17, 19, 22, 24, 27, 29, 31, 34, 36, 39, 41, 44, 46, 49, 51, 54, 56, 59, 61, 63, 66, 68, 71, 73, 76, 78, 81, 83, 86, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110, 113, 115, 118, 120, 122, 125, 127, 130, 132, 135, 137, 140, 142, 145, 147, 149, 152
Offset: 1

Views

Author

Robert G. Wilson v, Oct 31 2001

Keywords

Crossrefs

Programs

  • Mathematica
    k = N[Khinchin, 100]; Table[ Floor[ n*(k - 1)/(k - 2) ], {n, 1, 70} ]

A100485 Decimal expansion of: (1) a simple-continued-fraction-like nesting in which all "partial quotients" are Khinchin's constant (A002210), or, equivalently, (2) the positive solution p of the polynomial p^2 - Khinchin*p - 1 = 0.

Original entry on oeis.org

3, 0, 1, 6, 9, 1, 6, 2, 8, 6, 1, 6, 5, 2, 0, 7, 7, 9, 4, 2, 4, 2, 4, 3, 7, 2, 4, 0, 4, 7, 1, 5, 5, 8, 3, 7, 9, 1, 7, 2, 6, 6, 7, 8, 6, 4, 5, 6, 2, 0, 4, 4, 7, 4, 8, 9, 0, 8, 9, 6, 2, 0, 4, 3, 7, 5, 9, 1, 8, 9, 4, 6, 8, 9, 4, 2, 5, 3, 1, 8, 4, 4, 6, 8, 8, 2, 2, 6, 5, 0, 2, 3, 6, 9, 6, 7, 0, 2, 5, 2, 5, 8, 6, 7, 2
Offset: 1

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), Nov 22 2004

Keywords

Examples

			3.016916286165207794242 437240471558379172667 864562044748908962043 759189468942531844688 22650236967025258672...
		

Crossrefs

Cf. A002210.

Programs

  • Mathematica
    N[FromContinuedFraction[{{Khinchin}}], 105]

Formula

(Khinchin + (4+Khinchin*Khinchin)^(1/2))/2

A119928 Continued fraction expansion of the value of Minkowski's question mark function at Khinchin's constant (A002210).

Original entry on oeis.org

2, 1, 3, 11, 10, 2, 1, 1, 2, 5, 2, 4, 23, 45, 1, 3, 9, 4, 3, 1, 2, 1, 24, 13, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 2, 51, 2, 7, 2, 1198400, 1, 3, 2, 10, 1, 11, 13, 1, 2, 1, 4, 1, 10, 3, 13, 1, 1, 1, 2, 13, 1, 1, 122, 148, 1, 48, 3, 1, 46, 1, 1, 1, 4, 2, 1, 5, 4, 1, 2, 1, 1, 8, 1, 8, 5, 1, 7, 1, 2, 1, 1
Offset: 0

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), May 29 2006; corrected Jun 04 2006

Keywords

Crossrefs

Cf. A119929.

Programs

  • Mathematica
    ContinuedFraction[(cf = ContinuedFraction[Khinchin, 80(*arbitrary precision*)]; IntegerPart[Khinchin] + Sum[(-1)^(k)/2^(Sum[cf[[i]], {i, 2, k}] - 1), {k, 2, Length[cf]}])]

A119929 Decimal expansion of the value of Minkowski's question mark function at Khinchin's constant (A002210).

Original entry on oeis.org

2, 7, 5, 5, 5, 0, 8, 4, 0, 9, 9, 8, 7, 6, 6, 9, 4, 4, 0, 0, 2, 5, 2, 9, 1, 9, 6, 9, 5, 1, 5, 5, 9, 1, 7, 6, 1, 2, 0, 8, 3, 8, 4, 0, 1, 4, 0, 2, 6, 3, 9, 4, 8, 8, 9, 7, 7, 5, 4, 3, 3, 1, 2, 4, 4, 1, 1, 2, 3, 1, 4, 2, 4, 5, 5, 5, 3, 5, 1, 7, 0, 2, 9, 2, 5, 6, 7, 1, 4, 2, 9, 3, 0, 8, 4, 3, 0, 4, 1, 3, 1, 4, 6, 2, 8
Offset: 1

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), May 29 2006; corrected Jun 04 2006

Keywords

Examples

			2.755508409987669440025291969515591761208384014026394889775...
		

Crossrefs

Cf. A119928.

Programs

  • Mathematica
    (*ensure variables are appropriately Cleared*) Off[ContinuedFraction::incomp]; mq[x_] := (If[Element[x, Rationals], cf = ContinuedFraction[x], cf = ContinuedFraction[x, 80(*arbitrary precision*)]]; IntegerPart[x] + Sum[(-1)^(k)/2^(Sum[cf[[i]], {i, 2, k}] - 1), {k, 2, Length[cf]}]); RealDigits[mq[Khinchin],10]
    RealDigits[(cf = ContinuedFraction[Khinchin, 80(*arbitrary precision*)]; IntegerPart[Khinchin] + Sum[(-1)^(k)/2^(Sum[cf[[i]], {i, 2, k}] - 1), {k,2, Length[cf]}]), 10]

A100611 Continued fraction expansion of (Khinchin + (4+Khinchin*Khinchin)^(1/2))/2 [A100485], where Khinchin is Khinchin's constant (A002210).

Original entry on oeis.org

3, 59, 8, 1, 2, 1, 1, 1, 1, 1, 2, 6, 1, 1, 3, 2, 1, 7, 1, 3, 2, 8, 5, 1, 3, 2, 6, 1, 2, 2, 2, 7, 1, 1, 3, 1, 10, 3, 1, 1, 3, 1, 1, 1, 2, 2, 3, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 5, 9, 2, 1, 21, 3, 1, 1, 2, 1, 13, 1, 3, 1, 1, 1, 1, 2, 2, 1, 3, 5, 1, 1, 2, 1, 3, 1, 1, 6, 4, 2, 1, 2, 1, 2, 9, 5, 16, 4, 1, 2, 2, 4
Offset: 0

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 01 2004

Keywords

Comments

The geometric mean of the first 5000 partial quotients (Product[a(n),{n,1,5000}]^(1/5000)), approximately 2.6289, suggests this constant's partial quotients do indeed converge to Khinchin's constant.

Crossrefs

Cf. A100485 (decimal expansion), A002210.

Programs

  • Mathematica
    ContinuedFraction[(Khinchin + (4+Khinchin*Khinchin)^(1/2))/2, 130]

Extensions

Offset changed by Andrew Howroyd, Aug 04 2024

A175819 Partial sums of digits of decimal expansion of Khinchin's constant (sequence A002210).

Original entry on oeis.org

2, 8, 16, 21, 25, 30, 32, 32, 32, 33, 33, 39, 44, 47, 47, 53, 57, 61, 66, 69, 69, 78, 85, 86, 90, 98, 101, 106, 110, 118, 119, 126, 135, 140, 146, 155, 158, 166, 168, 168, 171, 179, 181, 183, 192, 195, 204, 213, 217, 221, 227, 229, 238, 243, 246, 246, 251, 252, 253
Offset: 1

Views

Author

Michel Lagneau, Sep 11 2010

Keywords

Examples

			Khinchin's constant 2.6854520010 ... so the sums are 2, 2+6, 2+6+8, 2+6+8+5, 2+6+8+5+4..., leading to the terms 2, 8, 16, 21, 25,...
		

Crossrefs

Cf. A002210 for digits of Khintchine's constant

Programs

  • Mathematica
    L= Rest@FoldList[ Plus, 0, First@ RealDigits[Khinchin, 10, 100]]
    Accumulate[RealDigits[Khinchin,10,60][[1]]]  (* Harvey P. Dale, Mar 24 2011 *)

A131688 Decimal expansion of the constant Sum_{k>=1} log(k + 1) / (k * (k + 1)).

Original entry on oeis.org

1, 2, 5, 7, 7, 4, 6, 8, 8, 6, 9, 4, 4, 3, 6, 9, 6, 3, 0, 0, 0, 9, 8, 9, 9, 8, 3, 0, 4, 9, 5, 8, 8, 1, 5, 2, 8, 5, 1, 1, 5, 4, 0, 8, 9, 0, 5, 0, 8, 8, 8, 4, 8, 6, 8, 9, 7, 7, 5, 4, 0, 8, 3, 3, 5, 2, 2, 5, 4, 9, 9, 9, 4, 8, 9, 3, 7, 4, 4, 9, 3, 4, 9, 7, 0, 7, 9, 0, 4, 7, 3, 1, 5, 0, 1, 9, 0, 9, 7, 8, 2, 4, 5, 4, 8
Offset: 1

Views

Author

R. J. Mathar, Sep 14 2007

Keywords

Comments

Given A131385(n) = Product_{k=1..n} floor((n+k)/k), then limit A131385(n+1)/A131385(n) = exp(c), where c = this constant. - Paul D. Hanna, Nov 26 2012
Closely related to A085361 (the exponent in the definition of A085291). - Yuriy Sibirmovsky, Sep 04 2016

Examples

			1.257746886944369630009899830495881528511540890508884868977540833522...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, page 62. [Jean-François Alcover, Mar 21 2013]

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); L:=RiemannZeta(); (&+[(-1)^(n+1)*Evaluate(L,n+1)/n: n in [1..10^3]]); // G. C. Greubel, Nov 15 2018
    
  • Maple
    evalf(sum((-1)^(n+1)*Zeta(n+1)/n, n=1..infinity), 120); # Vaclav Kotesovec, Dec 11 2015
    evalf(Sum(-Zeta(1, k), k = 2..infinity), 120); # Vaclav Kotesovec, Jun 18 2021
  • Mathematica
    Sum[ -Zeta'[1 + k], {k, 1, Infinity}] (* Vladimir Reshetnikov, Dec 28 2008 *)
    Integrate[EulerGamma/x + PolyGamma[0, 1+x]/x, {x, 0, 1}] // N[#, 105]& // RealDigits[#][[1]]& (* or *) Integrate[x*Log[x]/((1-x)*Log[1-x]), {x, 0, 1}] // N[#, 105]& // RealDigits[#][[1]]& (* Jean-François Alcover, Feb 04 2013 *)
    $MaxExtraPrecision = 200; NIntegrate[HarmonicNumber[t]/t, {t, 0, 1}, WorkingPrecision -> 105] (* Yuriy Sibirmovsky, Sep 04 2016 *)
    digits = 120; RealDigits[NSum[(-1)^(n + 1)*Zeta[n + 1]/n, {n,1,Infinity}, NSumTerms -> 20*digits, WorkingPrecision -> 10*digits, Method -> "AlternatingSigns"], 10, digits][[1]] (* G. C. Greubel, Nov 15 2018 *)
  • PARI
    sumalt(s=1, (-1)^(s+1)/s*zeta(s+1) )
    
  • PARI
    suminf(k=2, -zeta'(k)) \\ Vaclav Kotesovec, Jun 17 2021
    
  • SageMath
    numerical_approx(sum((-1)^(k+1)*zeta(k+1)/k for k in [1..1000]), digits=100) # G. C. Greubel, Nov 15 2018

Formula

Equals Sum_{s>=1} (-1)^(s+1)*zeta(s+1)/s.
Equals Sum_{k>=1} -zeta'(1 + k), where Zeta' is the derivative of the Riemann zeta function. - Vladimir Reshetnikov, Dec 28 2008
Equals Sum_{s>=1} log(1+1/s)/s. - Jean-François Alcover, Mar 26 2013
Equals Integral_{t=0..1} H(t)/t dt. Compare to A001620 = Integral_{t=0..1} H(t) dt. Where H(t) are generalized harmonic numbers. - Yuriy Sibirmovsky, Sep 04 2016
Equals lim_{n->oo} log(d(n!))*log(n)/n, where d(n) is the number of divisors of n (A000005) (Erdős et al., 1996). - Amiram Eldar, Nov 07 2020

Extensions

Extended to 105 digits by Jean-François Alcover, Feb 04 2013

A002211 Continued fraction for Khintchine's constant.

Original entry on oeis.org

2, 1, 2, 5, 1, 1, 2, 1, 1, 3, 10, 2, 1, 3, 2, 24, 1, 3, 2, 3, 1, 1, 1, 90, 2, 1, 12, 1, 1, 1, 1, 5, 2, 6, 1, 6, 3, 1, 1, 2, 5, 2, 1, 2, 1, 1, 4, 1, 2, 2, 3, 2, 1, 1, 4, 1, 1, 2, 5, 2, 1, 1, 3, 29, 8, 3, 1, 4, 3, 1, 10, 50, 1, 2, 2, 7, 6, 2, 2, 16, 4, 4, 2, 2, 3, 1, 1, 7, 1, 5, 1, 2, 1, 5, 3, 1
Offset: 0

Views

Author

Keywords

Comments

Incrementally larger terms in the continued fraction for Khintchine's constant: 1, 2, 5, 10, 24, 90, 770, 941, 11759, 54097, 231973, ..., and they occur at 1, 2, 3, 10, 15, 23, 104, 1701, 2445, 18995, 60037, ... - Robert G. Wilson v, Dec 09 2013

Examples

			2.685452001065306445309714835... = 2 + 1/(1 + 1/(2 + 1/(5 + 1/(1 + ...))))
[a_0; a_1, a_2, ...] = [2, 1, 2, ...]
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002210.

Programs

  • Mathematica
    ContinuedFraction[Khinchin, 100]

Extensions

More terms from Robert G. Wilson v, Oct 31 2001

A085361 Decimal expansion of the number c = Sum_{n>=1} (zeta(n+1)-1)/n.

Original entry on oeis.org

7, 8, 8, 5, 3, 0, 5, 6, 5, 9, 1, 1, 5, 0, 8, 9, 6, 1, 0, 6, 0, 2, 7, 6, 3, 2, 3, 4, 5, 4, 5, 5, 4, 6, 6, 6, 4, 7, 2, 7, 4, 9, 6, 6, 8, 2, 2, 3, 2, 8, 1, 6, 4, 9, 7, 5, 5, 1, 5, 6, 4, 0, 2, 3, 0, 1, 7, 8, 0, 6, 4, 3, 5, 6, 3, 3, 0, 1, 6, 2, 2, 8, 7, 4, 7, 1, 5, 9, 2, 1, 3, 3, 2, 2, 4, 3, 1, 9, 6, 7, 5, 6
Offset: 0

Views

Author

Eric W. Weisstein, Jun 25 2003

Keywords

Comments

The Alladi-Grinstead constant (A085291) is exp(c-1).

Examples

			0.78853056591150896106027632345455466647274966822328164975515640230178...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8.1 Alternative representations [of real numbers], p. 62.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(120)); L:=RiemannZeta(); (&+[(Evaluate(L,n+1)-1)/n: n in [1..1000]]); // G. C. Greubel, Nov 15 2018
  • Maple
    evalf(sum((Zeta(n+1)-1)/n, n=1..infinity), 120); # Vaclav Kotesovec, Dec 11 2015
    evalf(Sum(-(-1)^k*Zeta(1, k), k = 2..infinity), 120); # Vaclav Kotesovec, Jun 18 2021
  • Mathematica
    Sum[(-1+Zeta[1+n])/n,{n,Infinity}]
    NSum[Log[k]/(k*(k+1)), {k, 1, Infinity}, WorkingPrecision -> 120, NSumTerms ->5000, Method -> {NIntegrate, MaxRecursion -> 100}] (* Vaclav Kotesovec, Dec 11 2015 *)
  • PARI
    suminf(n=1,(zeta(n+1)-1-2^(-n-1))/n)+log(2)/2 \\ Charles R Greathouse IV, Feb 20 2012
    
  • PARI
    sumalt(k=2, -(-1)^k * zeta'(k)) \\ Vaclav Kotesovec, Jun 17 2021
    
  • Sage
    import mpmath
    mpmath.mp.pretty=True; mpmath.mp.dps=108 #precision
    mpmath.nsum(lambda n: (-1+mpmath.zeta(1+n))/n, [1,mpmath.inf]) # Peter Luschny, Jul 14 2012
    
  • Sage
    numerical_approx(sum((zeta(k+1)-1)/k for k in [1..1000]), digits=120) # G. C. Greubel, Nov 15 2018
    

Formula

Equals Sum_{n>=2} log(n/(n-1))/n = Sum_{n>=1, k>=2} 1/(n*k^(n+1)). [From Mathworld links]
Equals -Sum_{k>=2} (-1)^k * zeta'(k). - Vaclav Kotesovec, Jun 17 2021
Equals log(A245254) = Sum_{k>=1} log(k)/(k*(k+1)). - Amiram Eldar, Jun 27 2021
Equals -log(A242624). - Amiram Eldar, Feb 06 2022
Showing 1-10 of 49 results. Next