cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A002327 Primes of the form k^2 - k - 1.

Original entry on oeis.org

5, 11, 19, 29, 41, 71, 89, 109, 131, 181, 239, 271, 379, 419, 461, 599, 701, 811, 929, 991, 1259, 1481, 1559, 1721, 1979, 2069, 2161, 2351, 2549, 2861, 2969, 3079, 3191, 3539, 3659, 4159, 4289, 4421, 4691, 4969, 5851, 6971, 7309, 7481, 8009, 8741, 8929
Offset: 1

Views

Author

Keywords

Comments

Also primes of form x*y + x + y or x*y - x - y, where x and y are two successive numbers. - Giovanni Teofilatto, May 12 2004
Equivalently primes p such that 4p+5 is square. - Giovanni Teofilatto, Sep 03 2005
Arithmetic numbers which are triangular, A003601(p)=A000217(k), p prime. sigma_1(p)/sigma_0(p) = k*(k+1)/2; sigma_r(p) divisor function, p prime, k integer. - Ctibor O. Zizka, Jul 14 2008
Also primes of the form k^2 + 3k + 1 (primes in A028387). - Zak Seidov, Apr 13 2014
Also primes p such that the sum of divisors (A000203) of p is oblong (A002378). - Michel Marcus, Jan 09 2015

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 46.
  • L. Poletti, Tavole di Numeri Primi Entro Limiti Diversi e Tavole Affini, Milan, 1920, p. 249.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002327 n = a002327_list !! (n-1)
    a002327_list = filter ((== 1) .  a010051') a028387_list
    -- Reinhard Zumkeller, Jul 17 2014
  • Magma
    [ a: n in [0..150] | IsPrime(a) where a is n^2 - n - 1 ]; // Vincenzo Librandi, Aug 01 2011
    
  • Maple
    A002327:=n->`if`(isprime(n^2-n-1), n^2-n-1, NULL): seq(A002327(n), n=1..100); # Wesley Ivan Hurt, Aug 09 2014
  • Mathematica
    Select[Table[n^2-n-1,{n,100}],PrimeQ] (* Harvey P. Dale, May 03 2011 *)
  • PARI
    for(n=2,1e3,if(isprime(k=n^2-n-1),print1(k", "))) \\ Charles R Greathouse IV, Jul 31 2011
    
  • PARI
    list(lim)=my(v=List(),p); forstep(n=5,sqrtint(4*lim+5),2, if(isprime(p=(n^2-5)/4), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Oct 10 2023
    

Formula

a(n) = A002328(n)^2 - A002328(n) - 1 = (A110013(n) - 5)/4. - Ray Chandler, Sep 07 2005
a(n) >> n^2 log n by Brun's sieve. - Charles R Greathouse IV, Oct 10 2023

Extensions

Extended by Ray Chandler, Sep 07 2005

A045546 Numbers k such that k^2 + k - 1 is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 15, 16, 19, 20, 21, 24, 26, 28, 30, 31, 35, 38, 39, 41, 44, 45, 46, 48, 50, 53, 54, 55, 56, 59, 60, 64, 65, 66, 68, 70, 76, 83, 85, 86, 89, 93, 94, 96, 100, 101, 103, 114, 115, 120, 125, 126, 130, 131, 134, 138, 140
Offset: 1

Views

Author

Paul Jobling (paul.jobling(AT)whitecross.com)

Keywords

References

  • L. Poletti, Le serie dei numeri primi appartenente alle due forme quadratiche (A) n^2+n+1 e (B) n^2+n-1 ..., Atti della Reale Accademia Nazionale dei Lincei, Memorie della Classe di Scienze Fisiche, Matematiche e Naturali, s. 6. 3 (1929), 193-218.

Crossrefs

Equals A002328-1. Cf. A002327, A002384.

Programs

A126424 Numbers k for which k^4-k-1 is prime.

Original entry on oeis.org

2, 4, 5, 6, 7, 9, 11, 13, 16, 20, 23, 26, 39, 40, 42, 44, 50, 53, 55, 57, 60, 61, 68, 71, 77, 79, 82, 92, 110, 111, 112, 123, 137, 139, 140, 147, 153, 154, 156, 169, 172, 174, 177, 183, 187, 189, 193, 198, 207, 214, 229, 230, 231, 239, 251, 258, 259, 272, 274, 279
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[x^4 - x - 1], AppendTo[a, x]], {x, 1, 1000}]; a

A126422 Primes of the form k^4-k-1.

Original entry on oeis.org

13, 251, 619, 1289, 2393, 6551, 14629, 28547, 65519, 159979, 279817, 456949, 2313401, 2559959, 3111653, 3748051, 6249949, 7890427, 9150569, 10555943, 12959939, 13845779, 21381307, 25411609, 35152963, 38950001, 45212093
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[x^4 - x - 1], AppendTo[a, x^4 - x - 1]], {x, 1, 100}]; a
    Select[Table[n^4-n-1,{n,100}],PrimeQ] (* Harvey P. Dale, Aug 27 2013 *)

Formula

a(n) = A126423(A126424(n)). - Amiram Eldar, Mar 13 2020

Extensions

Definition corrected by Charles R Greathouse IV, Mar 11 2008

A126423 a(n) = n^4 - n - 1.

Original entry on oeis.org

-1, 13, 77, 251, 619, 1289, 2393, 4087, 6551, 9989, 14629, 20723, 28547, 38401, 50609, 65519, 83503, 104957, 130301, 159979, 194459, 234233, 279817, 331751, 390599, 456949, 531413, 614627, 707251, 809969, 923489, 1048543, 1185887, 1336301, 1500589, 1679579, 1874123, 2085097, 2313401, 2559959
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2006

Keywords

Crossrefs

Programs

  • Magma
    [n^4-n-1: n in [1..40]]; // Vincenzo Librandi, Aug 30 2011
  • Mathematica
    a = {}; Do[AppendTo[a, x^4 - x - 1], {x, 1, 100}]; a

Formula

From Elmo R. Oliveira, Aug 29 2025: (Start)
G.f.: x*(-1 + 18*x + 2*x^2 + 6*x^3 - x^4)/(1-x)^5.
E.g.f.: 1 + (-1 + 7*x^2 + 6*x^3 + x^4)*exp(x).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5. (End)

A126426 a(n) = n^5 - n - 1.

Original entry on oeis.org

-1, 29, 239, 1019, 3119, 7769, 16799, 32759, 59039, 99989, 161039, 248819, 371279, 537809, 759359, 1048559, 1419839, 1889549, 2476079, 3199979, 4084079, 5153609, 6436319, 7962599, 9765599, 11881349, 14348879, 17210339, 20511119, 24299969, 28629119, 33554399, 39135359, 45435389
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2006

Keywords

Comments

Every number gives remainder 29 when divided by 30, remainder 9 when divided by 10, and remainder 4 when divided by 5.

Crossrefs

Programs

Formula

G.f.: x*(x^5-5*x^4+40*x^3+50*x^2+35*x-1)/(1-x)^6. - Colin Barker, Oct 07 2012

A126425 Primes of the form k^5-k-1.

Original entry on oeis.org

29, 239, 1019, 3119, 99989, 161039, 759359, 1048559, 1419839, 2476079, 3199979, 4084079, 14348879, 17210339, 24299969, 45435389, 60466139, 164916179, 254803919, 312499949, 550731719, 1934917559, 2373046799, 3707398349
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2006

Keywords

Comments

Every number give rest 29 when divided 30, rest 9 when divided 10, rest 4 when divided 5

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[x^5 - x - 1], AppendTo[a, x^5 - x - 1]], {x, 1, 100}]; a
    Select[Table[k^5-k-1,{k,90}],PrimeQ] (* Harvey P. Dale, Apr 21 2024 *)

Formula

a(n) = A126426(A126427(n)). - Amiram Eldar, Mar 13 2020

A126427 Numbers k for which k^5-k-1 is prime.

Original entry on oeis.org

2, 3, 4, 5, 10, 11, 15, 16, 17, 19, 20, 21, 27, 28, 30, 34, 36, 44, 48, 50, 56, 72, 75, 82, 84, 97, 101, 103, 105, 109, 113, 117, 130, 133, 141, 154, 157, 163, 177, 179, 188, 197, 204, 207, 218, 240, 248, 249, 250, 252, 262, 268, 281, 283, 285, 286, 291, 301, 305, 315
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[x^5 - x - 1], AppendTo[a, x]], {x, 1, 1000}]; a

A094210 Numbers k such that k^2 + 3k + 1 is a prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 18, 19, 20, 23, 25, 27, 29, 30, 34, 37, 38, 40, 43, 44, 45, 47, 49, 52, 53, 54, 55, 58, 59, 63, 64, 65, 67, 69, 75, 82, 84, 85, 88, 92, 93, 95, 99, 100, 102, 113, 114, 119, 124, 125, 129, 130, 133, 137, 139, 140, 143, 144, 147, 148
Offset: 1

Views

Author

Giovanni Teofilatto, May 27 2004

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..200] | IsPrime(n^2 + 3*n + 1)]; // Vincenzo Librandi, Nov 11 2014
  • Mathematica
    Select[ Range[150], PrimeQ[ #^2 + 3# + 1] &] (* Robert G. Wilson v, May 29 2004 *)

Formula

a(n) = A002328(n)-2. - R. J. Mathar, Aug 08 2012

Extensions

Edited and extended by Robert G. Wilson v, May 29 2004

A110013 Squares of the form 4p + 5, where p is a prime.

Original entry on oeis.org

25, 49, 81, 121, 169, 289, 361, 441, 529, 729, 961, 1089, 1521, 1681, 1849, 2401, 2809, 3249, 3721, 3969, 5041, 5929, 6241, 6889, 7921, 8281, 8649, 9409, 10201, 11449, 11881, 12321, 12769, 14161, 14641, 16641, 17161, 17689, 18769, 19881, 23409
Offset: 1

Views

Author

Giovanni Teofilatto, Sep 03 2005

Keywords

Comments

The sequence contain all squares of greater of twin primes.

Crossrefs

Programs

  • Mathematica
    Select[4#+5&/@Prime[Range[900]],IntegerQ[Sqrt[#]]&]  (* Harvey P. Dale, Jan 29 2011 *)

Formula

a(n) = 4*A002327(n) + 5 = A088502(n)^2.

Extensions

Corrected and extended by Ray Chandler, Sep 04 2005
Showing 1-10 of 28 results. Next