cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002453 Central factorial numbers: 2nd subdiagonal of A008958.

Original entry on oeis.org

1, 35, 966, 24970, 631631, 15857205, 397027996, 9931080740, 248325446061, 6208571999575, 155218222621826, 3880490869237710, 97012589464171291, 2425317596203339145, 60632965641474990456, 1515824372664398367880
Offset: 0

Views

Author

Keywords

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 36.

Crossrefs

Right-hand column 2 in triangle A008958.
Cf. A002452.

Programs

  • GAP
    List([0..20],n->(5^(2*n+4)-3^(2*n+5)+2)/384); # Muniru A Asiru, Dec 20 2018
    
  • Magma
    [(5^(2*n+4)-3^(2*n+5)+2)/384: n in [0..20]]; // G. C. Greubel, Jul 04 2019
    
  • Maple
    A002453:=-1/(z-1)/(25*z-1)/(9*z-1); # Simon Plouffe (from his 1992 dissertation).
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-9x)(1-25x)),{x,0,20}],x] (* or *) LinearRecurrence[{35,-259,225},{1,35,966},20] (* Harvey P. Dale, Feb 25 2015 *)
  • PARI
    vector(20, n, n--; (5^(2*n+4)-3^(2*n+5)+2)/384) \\ G. C. Greubel, Jul 04 2019
    
  • Sage
    [(5^(2*n+4)-3^(2*n+5)+2)/384 for n in (0..20)] # G. C. Greubel, Jul 04 2019

Formula

G.f.: 1/((1 - x)*(1 - 9*x)*(1 - 25*x)).
a(n) = (5^(2*n + 4) - 3^(2*n + 5) + 2)/384.
E.g.f.: sinh(x)^5/120 = Sum_{n>=0} a(n)*x^(2*n + 5)/(2*n + 5)!. - Vladimir Kruchinin, Sep 30 2012
a(n) = det(|v(i+3,j+2)|, 1 <= i,j <= n), where v(n,k) are central factorial numbers of the first kind with odd indices (A008956). - Mircea Merca, Apr 06 2013
a(n) = 35*a(n-1) -259*a(n-2) +225*a(n-3), with a(0) = 1, a(1) = 35, a(2) = 966. - Harvey P. Dale, Feb 25 2015
a(n) = 25*a(n-1) + A002452(n+1), with a(0) = 1. - Nadia Lafreniere, Aug 08 2022