A002662 a(n) = 2^n - 1 - n*(n+1)/2.
0, 0, 0, 1, 5, 16, 42, 99, 219, 466, 968, 1981, 4017, 8100, 16278, 32647, 65399, 130918, 261972, 524097, 1048365, 2096920, 4194050, 8388331, 16776915, 33554106, 67108512, 134217349, 268435049, 536870476, 1073741358, 2147483151, 4294966767, 8589934030
Offset: 0
Examples
a(4) = 5 is the number of crossing set partitions of {1,2,..,5}, card{13|245, 14|235, 24|135, 25|134, 35|124}. - _Peter Luschny_, Apr 29 2011
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VI: Voronoi Reduction of Three-Dimensional Lattices, Proc. Royal Soc. London, Series A, 436 (1992), 55-68. (See Table 1.)
- W. M. B. Dukes, On the number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- J. Eckhoff, Der Satz von Radon in konvexen Produktstrukturen II, Monat. f. Math., 73 (1969), 7-30.
- R. K. Guy, Letter to N. J. A. Sloane
- Sean Keel, Intersection theory of moduli space of stable n-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), 545-574.
- Pablo Hueso Merino , The first problem from the 55th Spanish Mathematical Olympiad asks to find the value of a(2019) (see comment from Jose Luis Arregui).
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Sergey V. Muravyov, Liudmila I. Khudonogova, and Ekaterina Y. Emelyanova, Interval data fusion with preference aggregation, Measurement (2017), see page 5.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (5,-9,7,-2).
Crossrefs
Programs
-
Haskell
a002662 n = a002662_list !! n a002662_list = map (sum . drop 3) a007318_tabl -- Reinhard Zumkeller, Jun 20 2015
-
Magma
[2^n - 1 - n*(n+1)/2: n in [0..35]]; // Vincenzo Librandi, May 20 2011
-
Maple
A002662 := z**2/(2*z-1)/(z-1)**3; # conjectured by Simon Plouffe in his 1992 dissertation A002662 := proc(n): 2^n - 1 - n*(n+1)/2 end: seq(A002662(n), n=0..33); # Johannes W. Meijer, Aug 14 2011
-
Mathematica
With[{nn=40},Join[{0},First[#]-1-Last[#]&/@Thread[{2^Range[nn], Accumulate[ Range[nn]]}]]] (* Harvey P. Dale, May 10 2012 *) Table[2^n - Binomial[n, 2] - n - 1, {n, 1, 100}] (* Pablo Hueso Merino, Dec 17 2019 *)
-
PARI
a(n)=2^n-1-n*(n+1)/2 \\ Charles R Greathouse IV, Oct 11 2015
-
Python
def A002662(n): return (1<
>1) # Chai Wah Wu, Aug 29 2023
Formula
G.f.: x^3/((1-2*x)*(1-x)^3).
a(n) = Sum_{k=0..n} binomial(n,k+3) = Sum_{k=3..n} binomial(n,k). - Paul Barry, Jul 30 2004
a(n+1) = 2*a(n) + binomial(n,2). - Paul Barry, Aug 23 2004
(1, 5, 16, 42, 99, ...) = binomial transform of (1, 4, 7, 8, 8, 8, ...). - Gary W. Adamson, Sep 30 2007
E.g.f.: exp(x)*(exp(x)-x^2/2-x-1). - Geoffrey Critzer, Feb 11 2009
a(n) = n - 2 + 3*a(n-1) - 2*a(n-2), for n >= 2. - Richard R. Forberg, Jul 11 2013
For n>1, a(n) = (1/4)*Sum_{k=1..n-2} 2^k*(n-k-1)*(n-k). For example, (1/4)*(2^1*(4*5) + 2^2*(3*4) + 2^3*(2*3) + 2^4*(1*2)) = 168/4 = 42. - J. M. Bergot, May 27 2014 [edited by Danny Rorabaugh, Apr 19 2015]
a(n) = Sum_{k=1..n-2} Sum_{i=1..n} (n-k-1) * C(k,i). - Wesley Ivan Hurt, Sep 19 2017
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) for n > 3. - Chai Wah Wu, Apr 03 2021
a(n) = a(n-1) + 1 + A000247(n-1). - Harry Richman, Aug 13 2024
Comments