A002664 a(n) = 2^n - C(n,0)- ... - C(n,4).
0, 0, 0, 0, 0, 1, 7, 29, 93, 256, 638, 1486, 3302, 7099, 14913, 30827, 63019, 127858, 258096, 519252, 1042380, 2089605, 4185195, 8377705, 16764265, 33539156, 67090962, 134196874, 268411298, 536843071, 1073709893
Offset: 0
References
- J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1995, Chapter 3, pp. 76-79.
- J. Eckhoff, Der Satz von Radon in konvexen Productstrukturen II, Monat. f. Math., 73 (1969), 7-30.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- R. K. Guy, Letter to N. J. A. Sloane
- Ângela Mestre, José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- H. P. Robinson, Letter to N. J. A. Sloane, Mar 21 1985
- Index entries for linear recurrences with constant coefficients, signature (7,-20,30,-25,11,-2).
Crossrefs
Programs
-
Haskell
a002664 n = a002664_list !! n a002664_list = map (sum . drop 5) a007318_tabl -- Reinhard Zumkeller, Jun 20 2015
-
Magma
[2^n-n^4/24+n^3/12-11*n^2/24-7*n/12-1: n in [0..35]]; // Vincenzo Librandi, May 20 2011
-
Maple
a:=n->sum(binomial(n+1,2*j),j=3..n+1): seq(a(n), n=0..30); # Zerinvary Lajos, May 12 2007 A002664:=1/(2*z-1)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
a=1;lst={};s1=s2=s3=s4=s5=0;Do[s1+=a;s2+=s1;s3+=s2;s4+=s3;s5+=s4;AppendTo[lst,s5];a=a*2,{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 10 2009 *) Table[Sum[ Binomial[n, k + 5], {k, 0, n}], {n, 0, 30}] (* Zerinvary Lajos, Jul 08 2009 *) Table[2^n-Total[Binomial[n,Range[0,4]]],{n,0,30}] (* or *) LinearRecurrence[ {7,-20,30,-25,11,-2},{0,0,0,0,0,1},40] (* Harvey P. Dale, Sep 03 2016 *)
Formula
G.f.: x^5/((1-2*x)*(1-x)^5).
a(n) = Sum_{k=0..n} C(n, k+5) = Sum_{k=5..n} C(n, k); a(n) = 2a(n-1) + C(n-1, 4). - Paul Barry, Aug 23 2004
a(n) = 2^n - n^4/24 + n^3/12 - 11*n^2/24 - 7*n/12 - 1. - Bruno Berselli, May 19 2011 [Robinson (1985) gives an alternative version of this formula, for a different offset. - N. J. A. Sloane, Oct 20 2015]
E.g.f.: exp(x)*(24*(exp(x) - 1) - 24*x - 12*x^2 - 4*x^3 - x^4)/24. - Stefano Spezia, Mar 09 2025
Comments