A003095 a(n) = a(n-1)^2 + 1 for n >= 1, with a(0) = 0.
0, 1, 2, 5, 26, 677, 458330, 210066388901, 44127887745906175987802, 1947270476915296449559703445493848930452791205, 3791862310265926082868235028027893277370233152247388584761734150717768254410341175325352026
Offset: 0
References
- Mordechai Ben-Ari, Mathematical Logic for Computer Science, Third edition, 173-203.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 443-448.
- R. K. Guy, How to factor a number, Proc. 5th Manitoba Conf. Numerical Math., Congress. Num. 16 (1975), 49-89.
- R. Penrose, The Emperor's New Mind, Oxford, 1989, p. 122.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..13
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- A. Berger and T. P. Hill, What is Benford's Law?, Notices, Amer. Math. Soc., 64:2 (2017), 132-134.
- Neil J. Calkin, Eunice Y. S. Chan, and Robert M. Corless, Some Facts and Conjectures about Mandelbrot Polynomials, Maple Transactions (2021) Vol. 1, No. 1, Article 1.
- P. Flajolet and A. M. Odlyzko, Limit distributions of coefficients of iterates of polynomials with applications to combinatorial enumerations, Math. Proc. Camb. Phil. Soc., 96 (1984), 237-253.
- Claudio Gentile, Fabio Vitale, and Anand Rajagopalan, Flattening a Hierarchical Clustering through Active Learning, arXiv:1906.09458 [cs.LG], 2019.
- Spencer Hamblen, Rafe Jones, and Kalyani Madhu, The density of primes in orbits of z^d + c, arXiv:1303.6513 [math.NT], 2013; to appear, Int. Math. Res. Not., c. 2015.
- Dimitur Krustev, Simple Programs on Binary Trees Testing and Decidable Equivalence, 2016.
- Robin Lamarche-Perrin, An Information-theoretic Framework for the Lossy Compression of Link Streams, arXiv:1807.06874 [cs.DS], 2018.
- R. Lamarche-Perrin, Y. Demazeau, and J.-M. Vincent, A Generic Algorithmic Framework to Solve Special Versions of the Set Partitioning Problem, Preprint 105, Max-Planck-Institut fur Mathematik in den Naturwissenschaften, Leipzig, 2014.
- C. Lenormand, Arbres et permutations II, see p. 6.
- Saad Mneimneh, Simple Variations on the Tower of Hanoi to Guide the Study of Recurrences and Proofs by Induction, Department of Computer Science, Hunter College, CUNY, 2019.
- Michael Penn, a stylish proof that..., YouTube video, 2021.
- R. P. Stanley, Letter to N. J. A. Sloane, c. 1991
- M. Tainiter, Algebraic approach to stopping variable problems: Representation theory and applications, J. Combinatorial Theory 9 1970 148-161.
- P. Tarau, A Logic Programming Playground for Lambda Terms, Combinators, Types and Tree-based Arithmetic Computations, arXiv preprint arXiv:1507.06944 [cs.LO], 2015.
- Stephan Wagner and Volker Ziegler, Irrationality of growth constants associated with polynomial recursions, arXiv:2004.09353 [math.NT], 2020.
- Wikipedia, Herbrand Structure
- Damiano Zanardini, Computational Logic, UPM European Master in Computational Logic (EMCL) School of Computer Science Technical University of Madrid.
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
- Index to divisibility sequences
- Index entries for sequences related to Benford's law
Crossrefs
Cf. A137560, which enumerates binary trees of height less than n and exactly j leaf nodes. - Robert Munafo, Nov 03 2009
Programs
-
Magma
function A003095(n) if n eq 0 then return 0; else return 1 + A003095(n-1)^2; end if; return A003095; end function; [A003095(n): n in [0..12]]; // G. C. Greubel, Nov 29 2022
-
Maple
a:= proc(n) option remember; `if`(n=0, 0, a(n-1)^2+1) end: seq(a(n), n=0..10); # Alois P. Heinz, Jul 11 2019
-
Mathematica
NestList[#^2+1&,0,10] (* Harvey P. Dale, Dec 17 2010 *)
-
PARI
{a(n) = if( n<1, 0, 1 + a(n-1)^2)}; /* Michael Somos, Jan 01 2013 */
-
SageMath
def A003095(n): return 0 if (n==0) else 1 + A003095(n-1)^2 [A003095(n) for n in range(13)] # G. C. Greubel, Nov 29 2022
Formula
a(n) = B_{n-1}(1) where B_n(x) = 1 + x*B_{n-1}(x)^2 is the generating function of trees of height <= n.
a(n) is asymptotic to c^(2^n) where c=1.2259024435287485386279474959130085213... (see A076949). - Benoit Cloitre, Nov 27 2002
c = b^(1/4) where b is the constant in Bottomley's formula in A004019. a(n) appears very asymptotic to c^(2^n) - Sum_{k>=1} A088674(k)/(2*c^(2^n))^(2*k-1). - Gerald McGarvey, Nov 17 2007
a(n) = Sum_{i=1..n} A001699(i). - Jonathan Vos Post, Feb 17 2010
G.f. = x + 2*x^2 + 5*x^3 + 26*x^4 + 677*x^5 + 458330*x^6 + 210066388901*x^7 + ... . - Michael Somos, Jan 01 2013
a(2n) mod 2 = 0 ; a(2n+1) mod 2 = 1. - Altug Alkan, Oct 04 2015
a(n) + a(n-1) = A213437(n). - Peter Bala, Feb 03 2017
0 = a(n)^2*(+a(n+1) + a(n+2)) + a(n+1)^2*(-a(n+1) - a(n+2) - a(n+3)) + a(n+2)^3 for all n>=0. - Michael Somos, Feb 10 2017
a(n) = A091980(2^(n-1)) for n > 0. - Alois P. Heinz, Jul 11 2019
Extensions
Additional comments from Cyril Banderier, Jun 05 2000
Minor edits by Vaclav Kotesovec, Oct 04 2014
Initial term clarified by Clark Kimberling, Nov 13 2019
Comments