cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003154 Centered 12-gonal numbers, or centered dodecagonal numbers: numbers of the form 6*k*(k-1) + 1.

Original entry on oeis.org

1, 13, 37, 73, 121, 181, 253, 337, 433, 541, 661, 793, 937, 1093, 1261, 1441, 1633, 1837, 2053, 2281, 2521, 2773, 3037, 3313, 3601, 3901, 4213, 4537, 4873, 5221, 5581, 5953, 6337, 6733, 7141, 7561, 7993, 8437, 8893, 9361, 9841, 10333, 10837, 11353, 11881, 12421
Offset: 1

Views

Author

Keywords

Comments

Binomial transform of [1, 12, 12, 0, 0, 0, ...]. Narayana transform (A001263) of [1, 12, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
Numbers k such that 6*k+3 is a square, these squares are given in A016946. - Gary Detlefs and Vincenzo Librandi, Aug 08 2010
Odd numbers of the form floor(n^2/6). - Juri-Stepan Gerasimov, Jul 27 2011
Bisection of A032528. - Omar E. Pol, Aug 20 2011
Sequence found by reading the line from 1, in the direction 1, 13, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A033581 in the same spiral. - Omar E. Pol, Sep 08 2011
The digital root has period 3 (1, 4, 1) (A146325), the same digital root as the centered triangular numbers A005448(n). - Peter M. Chema, Dec 20 2023

Examples

			From _Omar E. Pol_, Aug 21 2011: (Start)
1. Classic illustration of initial terms of the star numbers:
.
.                                     o
.                                    o o
.                  o            o o o o o o o
.               o o o o          o o o o o o
.     o          o o o            o o o o o
.               o o o o          o o o o o o
.                  o            o o o o o o o
.                                    o o
.                                     o
.
.     1            13                 37
.
2. Alternative illustration of initial terms using n-1 concentric hexagons around a central element:
.
.                                 o o o o o
.                                o         o
.                o o o          o   o o o   o
.               o     o        o   o     o   o
.     o        o   o   o      o   o   o   o   o
.               o     o        o   o     o   o
.                o o o          o   o o o   o
.                                o         o
.                                 o o o o o
(End)
		

References

  • Martin Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 20.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

G.f.: x*(1+10*x+x^2)/(1-x)^3. Simon Plouffe in his 1992 dissertation
a(n) = 1 + Sum_{j=0..n} (12*j). E.g., a(2)=37 because 1 + 12*0 + 12*1 + 12*2 = 37. - Xavier Acloque, Oct 06 2003
a(n) = numerator in B_2(x) = (1/2)x^2 - (1/2)x + 1/12 = Bernoulli polynomial of degree 2. - Gary W. Adamson, May 30 2005
a(n) = 12*(n-1) + a(n-1), with n>1, a(1)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = A049598(n-1) + 1. - Omar E. Pol, Oct 03 2011
Sum_{n>=1} 1/a(n) = A306980 = Pi * tan(Pi/(2*sqrt(3))) / (2*sqrt(3)). - Vaclav Kotesovec, Jul 23 2019
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} a(n)/n! = 7*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 7/e - 1. (End)
a(n) = 2*A003215(n-1) - 1. - Leo Tavares, Jul 30 2021
E.g.f.: exp(x)*(1 + 6*x^2) - 1. - Stefano Spezia, Aug 19 2022

Extensions

More terms from Michael Somos