A003154 Centered 12-gonal numbers, or centered dodecagonal numbers: numbers of the form 6*k*(k-1) + 1.
1, 13, 37, 73, 121, 181, 253, 337, 433, 541, 661, 793, 937, 1093, 1261, 1441, 1633, 1837, 2053, 2281, 2521, 2773, 3037, 3313, 3601, 3901, 4213, 4537, 4873, 5221, 5581, 5953, 6337, 6733, 7141, 7561, 7993, 8437, 8893, 9361, 9841, 10333, 10837, 11353, 11881, 12421
Offset: 1
Examples
From _Omar E. Pol_, Aug 21 2011: (Start) 1. Classic illustration of initial terms of the star numbers: . . o . o o . o o o o o o o o . o o o o o o o o o o . o o o o o o o o o . o o o o o o o o o o . o o o o o o o o . o o . o . . 1 13 37 . 2. Alternative illustration of initial terms using n-1 concentric hexagons around a central element: . . o o o o o . o o . o o o o o o o o . o o o o o o . o o o o o o o o o . o o o o o o . o o o o o o o o . o o . o o o o o (End)
References
- Martin Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 20.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- John Elias, Illustration: Star Configurations on the Zero-Centered Hexagonal Number Spiral.
- John Elias, Illustration: Star Configurations on the Zero-Centered Square and Hexagonal Number Spirals.
- John Elias, Illustration: Generalized Pentagonal and Octagonal Numbers in the Star-Crossed Configurations.
- John Elias, Illustration: Generalized Pentagonal and Octagonal Integration in Centered 9-gonal Triangles.
- Martin Gardner and N. J. A. Sloane, Correspondence, 1973-74.
- Marco Matone and Roberto Volpato, Vector-Valued Modular Forms from the Mumford Form, Schottky-Igusa Form, Product of Thetanullwerte and the Amazing Klein Formula, arXiv:1102.0006 [math.AG], 2011-2012, c_n.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Amelia C. Sparavigna, Groupoid of OEIS A003154 numbers (star numbers or centered dodecagonal numbers), Politecnico di Torino, Repository istituzionale (2019).
- Amelia Carolina Sparavigna, Groupoid of OEIS A003154 Numbers (star numbers or centered dodecagonal numbers), Department of Applied Science and Technology, Politecnico di Torino (Italy, 2019).
- Amelia Carolina Sparavigna, Generalized Sum of Stella Octangula Numbers, Politecnico di Torino (Italy, 2021).
- Leo Tavares, Illustration: Twin Hexagons.
- Leo Tavares, Illustration: Diamond Rays.
- Eric Weisstein's World of Mathematics, Star Number.
- R. Yin, J. Mu, and T. Komatsu, The p-Frobenius Number for the Triple of the Generalized Star Numbers, Preprints 2024, 2024072280. See p. 1.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
- Index entries for sequences related to centered polygonal numbers.
Crossrefs
Programs
-
GAP
List([1..50], n-> 12*Binomial(n,2)+1 ); # G. C. Greubel, Jul 23 2019
-
J
([: >: 6 * ] * <:) i.1000 NB. Stephen Makdisi, May 06 2018
-
Magma
[12*Binomial(n,2)+1: n in [1..50]]; // G. C. Greubel, Jul 23 2019
-
Maple
A003154:=n->6*n*(n-1) + 1: seq(A003154(n), n=1..100); # Wesley Ivan Hurt, Oct 23 2017
-
Mathematica
FoldList[#1 + #2 &, 1, 12 Range@50] (* Robert G. Wilson v *) LinearRecurrence[{3,-3,1},{1,13,37},50] (* Harvey P. Dale, Jul 18 2016 *) 12*Binomial[Range[50], 2] + 1 (* G. C. Greubel, Jul 23 2019 *)
-
PARI
a(n)=6*n*(n-1)+1 \\ Charles R Greathouse IV, Nov 20 2012
-
Python
print([6*n*(n-1)+1 for n in range(1, 47)]) # Michael S. Branicky, Jan 13 2021
Formula
G.f.: x*(1+10*x+x^2)/(1-x)^3. Simon Plouffe in his 1992 dissertation
a(n) = 1 + Sum_{j=0..n} (12*j). E.g., a(2)=37 because 1 + 12*0 + 12*1 + 12*2 = 37. - Xavier Acloque, Oct 06 2003
a(n) = numerator in B_2(x) = (1/2)x^2 - (1/2)x + 1/12 = Bernoulli polynomial of degree 2. - Gary W. Adamson, May 30 2005
a(n) = 12*(n-1) + a(n-1), with n>1, a(1)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = A049598(n-1) + 1. - Omar E. Pol, Oct 03 2011
Sum_{n>=1} 1/a(n) = A306980 = Pi * tan(Pi/(2*sqrt(3))) / (2*sqrt(3)). - Vaclav Kotesovec, Jul 23 2019
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} a(n)/n! = 7*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 7/e - 1. (End)
a(n) = 2*A003215(n-1) - 1. - Leo Tavares, Jul 30 2021
E.g.f.: exp(x)*(1 + 6*x^2) - 1. - Stefano Spezia, Aug 19 2022
Extensions
More terms from Michael Somos
Comments