A003261 Woodall (or Riesel) numbers: n*2^n - 1.
1, 7, 23, 63, 159, 383, 895, 2047, 4607, 10239, 22527, 49151, 106495, 229375, 491519, 1048575, 2228223, 4718591, 9961471, 20971519, 44040191, 92274687, 192937983, 402653183, 838860799, 1744830463, 3623878655, 7516192767, 15569256447, 32212254719, 66571993087
Offset: 1
Examples
G.f. = x + 7*x^2 + 23*x^3 + 63*x^4 + 159*x^5 + 383*x^6 + 895*x^7 + ... - _Michael Somos_, Nov 04 2018
References
- A. Brousseau, Number Theory Tables. Fibonacci Association, San Jose, CA, 1973, p. 159.
- K. R. Bhutani and A. B. Levin, "The Problem of Sawing a Chain", Journal of Recreational Mathematics 2002-3 31(1) 32-35.
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
- M. Gardner, Martin Gardner's Sixth Book of Mathematical Diversions from Scientific American, "Gold Links", Problem 4, pp. 50-51; 57-58, University of Chicago Press, 1983.
- O. O'Shea, Mathematical Brainteasers with Surprising Solutions, Problem 76, pp. 183-185, Prometheus Books, Guilford, Connecticut, 2020.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 241.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vladimir Pletser, Table of n, a(n) for n = 1..3000 (terms 1..300 from T. D. Noe).
- Ray Ballinger, Woodall Primes: Definition and Status.
- Attila Bérczes, István Pink, and Paul Thomas Young, Cullen numbers and Woodall numbers in generalized Fibonacci sequences, J. Num. Theor. (2024) Vol. 262, 86-102.
- Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972. See p. 159.
- C. K. Caldwell, Woodall Numbers.
- Orhan Eren and Yüksel Soykan, Gaussian Generalized Woodall Numbers, Arch. Current Res. Int'l (2023) Vol. 23, Iss. 8, Art. No. ACRI.108618, 48-68. See p. 50.
- Orhan Eren and Yüksel Soykan, On Dual Hyperbolic Generalized Woodall Numbers, Arch. Current Res. Int'l (2024) Vol. 24, Iss. 11, Art. No. ACRI.126420, 398-423. See p. 401.
- Ignas Gasparavičius, Andrius Grigutis, and Juozas Petkelis, Picturesque convolution-like recurrences and partial sums' generation, arXiv:2507.23619 [math.NT], 2025. See p. 27.
- Paul Leyland, Factors of Cullen and Woodall numbers.
- Paul Leyland, Generalized Cullen and Woodall numbers.
- D. Marques, On Generalized Cullen and Woodall Numbers That are Also Fibonacci Numbers, Journal of Integer Sequences, 17 (2014), #14.9.4.
- Hisanori Mishima, Factorizations of many number sequences: Riesel numbers, n=1..100, n=101..200, n=201..300, n=301..323.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- T. Sillke, Using Chains Links To Pay For A Room.
- Amelia Carolina Sparavigna, On the generalized sums of Mersenne, Fermat, Cullen and Woodall Numbers, Politecnico di Torino (Italy, 2019).
- Amelia Carolina Sparavigna, Composition Operations of Generalized Entropies Applied to the Study of Numbers, International Journal of Sciences (2019) Vol. 8, No. 4, 87-92.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Eric Weisstein's World of Mathematics, Woodall Number.
- Wikipedia, Woodall number.
- Index entries for linear recurrences with constant coefficients, signature (5,-8,4).
Crossrefs
Programs
-
Haskell
a003261 = (subtract 1) . a036289 -- Reinhard Zumkeller, Mar 05 2012
-
Magma
[n*2^n - 1: n in [1..30]]; // G. C. Greubel, Nov 04 2018
-
Maple
for n from 1 to 3000 do n, n*2^n -1; end do; # Vladimir Pletser, Dec 30 2022
-
Mathematica
Table[n*2^n-1,{n,3*4!}] (* Vladimir Joseph Stephan Orlovsky, Apr 25 2010 *) LinearRecurrence[{5,-8,4},{1,7,23},30] (* Harvey P. Dale, Mar 13 2022 *)
-
PARI
A003261(n)=n*2^n-1 \\ M. F. Hasler, Oct 31 2012
-
Python
[n*2**n - 1 for n in range(1, 29)] # Michael S. Branicky, Jan 07 2021
Formula
G.f.: x*(-1-2*x+4*x^2) / ( (x-1)*(-1+2*x)^2 ). - Simon Plouffe in his 1992 dissertation
Binomial transform of A133653 and double binomial transform of [1, 5, -1, 1, -1, 1, ...]. - Gary W. Adamson, Sep 19 2007
a(n) = -(2)^n * A006127(-n) for all n in Z. - Michael Somos, Nov 04 2018
E.g.f.: 1 + exp(x)*(2*exp(x)*x - 1). - Stefano Spezia, Nov 24 2024
Comments