A038718 Number of permutations P of {1,2,...,n} such that P(1)=1 and |P^-1(i+1)-P^-1(i)| equals 1 or 2 for i=1,2,...,n-1.
1, 1, 2, 4, 6, 9, 14, 21, 31, 46, 68, 100, 147, 216, 317, 465, 682, 1000, 1466, 2149, 3150, 4617, 6767, 9918, 14536, 21304, 31223, 45760, 67065, 98289, 144050, 211116, 309406, 453457, 664574, 973981, 1427439, 2092014, 3065996, 4493436, 6585451
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..6023
- Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, Integer sequences from k-iterated line digraphs, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-1).
Programs
-
Mathematica
LinearRecurrence[{2,-1,1,-1},{1,1,2,4},50] (* or *) CoefficientList[ Series[(x^2-x+1)/(x^4-x^3+x^2-2x+1),{x,0,50}],x] (* Harvey P. Dale, Apr 24 2011 *)
-
PARI
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,1,-1,2]^(n-1)*[1;1;2;4])[1,1] \\ Charles R Greathouse IV, Apr 07 2016
Formula
From Joseph Myers, Feb 03 2004: (Start)
G.f.: (1 -x +x^2)/(1-2*x+x^2-x^3+x^4).
a(n) = a(n-1) + a(n-3) + 1. (End)
Extensions
More terms from Joseph Myers, Feb 03 2004
Comments