cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A085104 Primes of the form 1 + n + n^2 + n^3 + ... + n^k, n > 1, k > 1.

Original entry on oeis.org

7, 13, 31, 43, 73, 127, 157, 211, 241, 307, 421, 463, 601, 757, 1093, 1123, 1483, 1723, 2551, 2801, 2971, 3307, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 8011, 8191, 9901, 10303, 11131, 12211, 12433, 13807, 14281, 17293, 19183, 19531, 20023
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 03 2003

Keywords

Comments

Primes that are base-b repunits with three or more digits for at least one b >= 2: Primes in A053696. Subsequence of A000668 U A076481 U A086122 U A165210 U A102170 U A004022 U ... (for each possible b). - Rick L. Shepherd, Sep 07 2009
From Bernard Schott, Dec 18 2012: (Start)
Also known as Brazilian primes. The primes that are not Brazilian primes are in A220627.
The number of terms k+1 is always an odd prime, but this is not enough to guarantee a prime, for example 111 = 1 + 10 + 100 = 3*37.
The inverses of the Brazilian primes form a convergent series; the sum is slightly larger than 0.33 (see Theorem 4 of Quadrature article in the Links). (End)
It is not known whether there are infinitely many Brazilian primes. See A002383. - Bernard Schott, Jan 11 2013
Primes of the form (n^p - 1)/(n - 1), where p is odd prime and n > 1. - Thomas Ordowski, Apr 25 2013
Number of terms less than 10^n: 1, 5, 14, 34, 83, 205, 542, 1445, 3880, 10831, 30699, 88285, ..., . - Robert G. Wilson v, Mar 31 2014
From Bernard Schott, Apr 08 2017: (Start)
Brazilian primes fall into two classes:
1) when n is prime, we get sequence A023195 except 3 which is not Brazilian,
2) when n is composite, we get sequence A285017. (End)
The conjecture proposed in Quadrature "No Sophie Germain prime is Brazilian (prime)" (see link Bernard Schott, Quadrature, Conjecture 1, page 36) is false. Thanks to Giovanni Resta, who found that a(856) = 28792661 = 1 + 73 + 73^2 + 73^3 + 73^4 = (11111)73 is the 141385th Sophie Germain prime. - _Bernard Schott, Mar 08 2019

Examples

			13 is a term since it is prime and 13 = 1 + 3 + 3^2 = 111_3.
31 is a term since it is prime and 31 = 1 + 2 + 2^2 + 2^3 + 2^4 = 11111_2.
From _Hartmut F. W. Hoft_, May 08 2017: (Start)
The sequence represented as a sparse matrix with the k-th column indexed by A006093(k+1), primes minus 1, and row n by A000027(n+1). Traversing the matrix by counterdiagonals produces a non-monotone ordering.
    2    4      6        10             12          16
2  7    31     127      -              8191        131071
3  13   -      1093     -              797161      -
4  -    -      -        -              -           -
5  31   -      19531    12207031       305175781   -
6  43   -      55987    -              -           -
7  -    2801   -        -              16148168401 -
8  73   -      -        -              -           -
9  -    -      -        -              -           -
10  -    -      -        -              -           -
11  -    -      -        -              -           50544702849929377
12  157  22621  -        -              -           -
13  -    30941  5229043  -              -           -
14  211  -      8108731  -              -           -
15  241  -      -        -              -           -
16 -    -      -        -              -           -
17  307  88741  25646167 2141993519227  -           -
18  -    -      -        -              -           -
19  -    -      -        -              -           -
20  421  -      -        10778947368421 -           689852631578947368421
21  463  -      -        17513875027111 -           1502097124754084594737
22  -    245411 -        -              -           -
23  -    292561 -        -              -           -
24  601  346201 -        -              -           -
Except for the initial values in the respective sequences the rows and columns as labeled in the matrix are:
column  2:  A002383            row 2:  A000668
column  4:  A088548            row 3:  A076481
column  6:  A088550            row 4:  -
column 10:  A162861            row 5:  A086122.
(End)
		

References

  • Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, page 174.

Crossrefs

Cf. A189891 (complement), A125134 (Brazilian numbers), A220627 (Primes that are non-Brazilian).
Cf. A003424 (n restricted to prime powers).
Equals A023195 \3 Union A285017 with empty intersection.
Primes of the form (b^k-1)/(b-1) for b=2: A000668, b=3: A076481, b=5: A086122, b=6: A165210, b=7: A102170, b=10: A004022.
Primes of the form (b^k-1)/(b-1) for k=3: A002383, k=5: A088548, k=7: A088550, k=11: A162861.

Programs

  • Haskell
    a085104 n = a085104_list !! (n-1)
    a085104_list = filter ((> 1) . a088323) a000040_list
    -- Reinhard Zumkeller, Jan 22 2014
  • Mathematica
    max = 140; maxdata = (1 - max^3)/(1 - max); a = {}; Do[i = 1; While[i = i + 2; cc = (1 - m^i)/(1 - m); cc <= maxdata, If[PrimeQ[cc], a = Append[a, cc]]], {m, 2, max}]; Union[a] (* Lei Zhou, Feb 08 2012 *)
    f[n_] := Block[{i = 1, d, p = Prime@ n}, d = Rest@ Divisors[p - 1]; While[ id = IntegerDigits[p, d[[i]]]; id != Reverse@ id || Union@ id != {1}, i++]; d[[i]]]; Select[ Range[2, 60], 1 + f@# != Prime@# &] (* Robert G. Wilson v, Mar 31 2014 *)
  • PARI
    list(lim)=my(v=List(),t,k);for(n=2,sqrt(lim), t=1+n;k=1; while((t+=n^k++)<=lim,if(isprime(t), listput(v,t))));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jan 08 2013
    
  • PARI
    A085104_vec(N,L=List())=forprime(K=3,logint(N+1,2),for(n=2,sqrtnint(N-1,K-1),isprime((n^K-1)\(n-1))&&listput(L,(n^K-1)\(n-1))));Set(L) \\ M. F. Hasler, Jun 26 2018
    

Formula

A010051(a(n)) * A088323(a(n)) > 1. - Reinhard Zumkeller, Jan 22 2014

Extensions

More terms from David Wasserman, Jan 26 2005

A023195 Prime numbers that are the sum of the divisors of some n.

Original entry on oeis.org

3, 7, 13, 31, 127, 307, 1093, 1723, 2801, 3541, 5113, 8011, 8191, 10303, 17293, 19531, 28057, 30103, 30941, 86143, 88741, 131071, 147073, 292561, 459007, 492103, 524287, 552793, 579883, 598303, 684757, 704761, 732541, 735307, 797161, 830833, 1191373
Offset: 1

Views

Author

Keywords

Comments

If n > 2 and sigma(n) is prime, then n must be an even power of a prime number. For example, 1093 = sigma(3^6). - T. D. Noe, Jan 20 2004
All primes of the form 2^n-1 (Mersenne primes) are in the sequence because if n is a natural number then sigma(2^(n-1)) = 2^n-1. So A000668 is a subsequence of this sequence. If sigma(n) is prime then n is of the form p^(q-1) where both p & q are prime (the proof is easy). - Farideh Firoozbakht, May 28 2005
Primes of the form 1 + p + p^2 + ... + p^k where p is prime.
If n = sigma(p^k) is in the sequence, then k+1 is prime. - Franklin T. Adams-Watters, Dec 19 2011
Primes that are a repunit in a prime base. - Franklin T. Adams-Watters, Dec 19 2011.
Except for 3, these primes are particular Brazilian primes belonging to A085104. These prime numbers are also Brazilian primes of the form (p^x - 1)/(p^y - 1), p prime, belonging to A003424, with here x is prime, and y = 1. [See section V.4 of Quadrature article in Links.] - Bernard Schott, Dec 25 2012
From Bernard Schott, Dec 25 2012: (Start)
Others subsequences of this sequence:
A053183 for 111_p = p^2 + p + 1 when p is prime.
A190527 for 11111_p = p^4 + p^3 + p^2 + p + 1 when p is prime.
A194257 for 1111111_p = p^6 + p^5 + p^4 + p^3 + p^2 + p + 1 when p is prime. (End)
Subsequence of primes from A002191. - Michel Marcus, Jun 10 2014

Examples

			307 = 1 + 17 + 17^2; 307 and 17 are primes.
		

Crossrefs

Intersection of A002191 and A000040.
Cf. A000203, A000668, A023194 (the n that produce these primes), A053696, A085104, A003424, A053183, A190527, A194257.

Programs

  • Mathematica
    t={3}; lim=10^9; n=1; While[p=Prime[n]; k=2; s=1+p+p^2; sHarvey P. Dale, Jun 18 2022 *)
  • PARI
    upto(lim)=my(v=List([3]),t); forprime(p=2,solve(x=1,lim^(1/4), x^4+x^3+x^2+x+1-lim), forprime(e=5,1+log(lim)\log(p), if(isprime(t=sigma(p^(e-1))) && t<=lim, listput(v,t)))); forprime(p=2, solve(x=1,lim^(1/2),x^2+x+1-lim), if(isprime(t=p^2+p+1), listput(v,t))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Dec 20 2011
    
  • Python
    from sympy import isprime, divisor_sigma
    A023195_list = sorted(set([3]+[n for n in (divisor_sigma(d**2) for d in range(1,10**4)) if isprime(n)])) # Chai Wah Wu, Jul 23 2016

A059055 Primes which can be written as (b^k+1)/(b+1) for positive integers b and k.

Original entry on oeis.org

3, 7, 11, 13, 31, 43, 61, 73, 157, 211, 241, 307, 421, 463, 521, 547, 601, 683, 757, 1123, 1483, 1723, 2551, 2731, 2971, 3307, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 8011, 8191, 9091, 9901, 10303, 11131, 12211, 12433, 13421, 13807, 14281
Offset: 1

Views

Author

Henry Bottomley, Dec 21 2000

Keywords

Comments

For (b^k+1)/(b+1) to be a prime, k must be an odd prime. 2=(0^0+1)/(0+1) has been excluded since neither b nor k would be positive.
From Bernard Schott, Apr 30 2021: (Start)
43 is the only known prime to have two such representations (examples).
The next two sequences realize a partition of this set: Brazilian primes of the form (c^q-1)/(c-1) (A002383 \ {3}) and primes that are not Brazilian (A343774). (End)

Examples

			43 is in the sequence since (2^7+1)/(2+1) = 129/3 = 43; indeed also (7^3+1)/(7+1) = 344/8 = 43.
		

Crossrefs

Programs

  • Mathematica
    max = 89; maxdata = (1 + max^3)/(1 + max); a = {}; Do[i = 1; While[i = i + 2; cc = (1 + m^i)/(1 + m); cc <= maxdata, If[PrimeQ[cc], a = Append[a, cc]]], {m, 2, max}]; Union[a] (* Lei Zhou, Feb 08 2012 *)
  • PARI
    isok(p) = {if (isprime(p), for (b=2, p, my(k=3); while ((x=(b^k+1)/(b+1)) <= p, if (x == p, return (1)); k = nextprime(k+1););););} \\ Michel Marcus, Apr 30 2021

A330832 Numbers of the form p*q, where p is prime and q=(p^k-1)/(p-1) is also prime for some integer k>1.

Original entry on oeis.org

6, 14, 39, 62, 155, 254, 3279, 5219, 16382, 19607, 70643, 97655, 208919, 262142, 363023, 402233, 712979, 1040603, 1048574, 1508597, 2265383, 2391483, 4685519, 5207819, 6728903, 21243689, 25239899, 56328959, 61035155, 67977559, 150508643, 310747739, 344964203
Offset: 1

Views

Author

Walter Kehowski, Jan 08 2020

Keywords

Comments

Also numbers with power-spectral basis {q,p^k}. The equation q=(p^k-1)/(p-1) is equivalent to the decomposition of the identity q + p^k = pq + 1 in Z/pqZ, and it is now easily verified that {q,p^k} is the spectral basis of p*q, consisting of primes and powers.
The numbers p^(r^e)*q, where p, q, r are primes, and q=(p^(r^e)-1)/(p^(r^(e-1))-1), e>0, have power-spectral basis {q,p^(r^e)}. However, the primes q for e>1 are usually quite large, while e=1 is accessible. For example, the table in A003424 has 4738 entries with all primes q<10^12, but only 8 have y>1.

Examples

			a(5) = 5*(5^3-1)/(5-1) = 5*31 = 155. The number 155 has spectral basis {31,125}.
		

Crossrefs

Formula

a(n) = A330833(n) * A330835(n).

A330833 a(n) = first prime factor p of the term A330832(n) = p*q.

Original entry on oeis.org

2, 2, 3, 2, 5, 2, 3, 17, 2, 7, 41, 5, 59, 2, 71, 13, 89, 101, 2, 17, 131, 3, 167, 173, 23, 29, 293, 383, 5, 13, 43, 677, 701, 743, 17, 761, 773, 827, 839, 857, 911, 1091, 1097, 5, 1163, 1181, 1193, 1217, 73, 1373, 1427, 79, 1487, 1559, 1583, 83, 2, 1709, 1811, 1847, 1931, 1973, 2129, 2273, 2309, 2339, 2411, 2663, 2729, 2789, 2957
Offset: 1

Views

Author

Walter Kehowski, Jan 08 2020

Keywords

Examples

			a(5) = 5 and, since A330834(5) = 3, then A330835(5) = (5^3-1)/(5-1) = 31 is prime.
		

Crossrefs

A330834 The exponents k of A330832, that is, if A330832(n)=p*q, where p is prime and q=(p^k-1)/(p-1) is prime, then a(n)=k.

Original entry on oeis.org

2, 3, 3, 5, 3, 7, 7, 3, 13, 5, 3, 7, 3, 17, 3, 5, 3, 3, 19, 5, 3, 13, 3, 3, 5, 5, 3, 3, 11, 7, 5, 3, 3, 3, 7, 3, 3, 3, 3, 3, 3, 3, 3, 13, 3, 3, 3, 3, 5, 3, 3, 5, 3, 3, 3, 5, 31, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 7, 3, 5, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Walter Kehowski, Jan 08 2020

Keywords

Examples

			a(5) = 3, and, since A330833(5)=5, then A330835(5)=(5^3-1)/(5-1) = 31 is prime.
		

Crossrefs

A330835 Primes q appearing in A330832: that is, if A330832(n)=p*q, where p is prime and q=(p^k-1)/(p-1) is prime, then a(n)=q.

Original entry on oeis.org

3, 7, 13, 31, 31, 127, 1093, 307, 8191, 2801, 1723, 19531, 3541, 131071, 5113, 30941, 8011, 10303, 524287, 88741, 17293, 797161, 28057, 30103, 292561, 732541, 86143, 147073, 12207031, 5229043, 3500201, 459007, 492103, 552793, 25646167, 579883, 598303, 684757
Offset: 1

Views

Author

Walter Kehowski, Jan 08 2020

Keywords

Comments

The terms in the b-file are the same as those of A003424 with y=1, but with an ordering based on that of A330832. The ordering allows the inclusion of the only duplicate 2^5-1=31 and (5^3-1)/(5-1)=31.

Examples

			a(5)=31 since A330833(5)=5, A330834(5)=3, and (5^3-1)/(5-1) = 31 is prime.
		

Crossrefs

Formula

a(n) = (A330833(n) ^ A330834(n) - 1) / (A330833(n) - 1).

A187823 Primes of the form (p^x - 1)/(p^y - 1), where p is prime, y > 1, and y is the largest proper divisor of x.

Original entry on oeis.org

5, 17, 73, 257, 757, 65537, 262657, 1772893, 4432676798593, 48551233240513, 378890487846991, 3156404483062657, 17390284913300671, 280343912759041771, 319913861581383373, 487014306953858713, 5559917315850179173, 7824668707707203971, 8443914727229480773, 32564717507686012813
Offset: 1

Views

Author

Bernard Schott, Dec 27 2012

Keywords

Comments

Complement of A023195 relative to A003424.
Only eight primes of this form don't exceed 1.275*10^10 (see Bateman and Stemmler):
(1) three of the form (p^9 - 1)/(p^3 - 1): 73 (p=2), 757 (p=3), 1772893 (p=11);
(2) four of the form (2^x - 1)/(2^y - 1) with x = 2y: 5 (x=4), 17 (x=8), 257 (x=16), 65537 (x=32); and
(3) the prime 262657 = (2^27 - 1)/(2^9 - 1).
Some of these prime numbers are not Brazilian, these are Fermat primes > 3: 5, 17, 257, 65537, so they are in A220627.
The other primes are Brazilian so they are in A085104, example: (p^9 - 1)/(p^3 - 1) = 111_{p^3} with 73 = 111_8, 757 = 111_27, 1772893 = 111_1331, also 262657 = 111_512 [See section V.4 of Quadrature article in Links] (comment improved in Mar 03 2023).
Comments from Don Reble, Jul 28 2022 (Start)
This is an easy sequence that looks hard.
Note that x must be a power of a prime; otherwise (p^x-1)/(p^y-1) has too many cyclotomic factors.
Almost all values are (p^9-1)/(p^3-1). The exceptions below 10^45
are the Fermat primes 5, 17, 257, 65537 and also
262657, 4432676798593, 5559917315850179173,
227376585863531112677002031251,
467056170954468301850494793701001,
36241275390490156321975496980895092369525753,
284661951906193731091845096405947222295673201 (see examples).
(End)

Examples

			5 = (2^4 - 1)/(2^2 - 1)= 11_{2^2} = 11_4.
17 = (2^8 - 1)/(2^4 - 1) = 11_{2^4} = 11_16.
257 = (2^16 - 1)/(2^8 - 1) = 11_{2^8} = 11_256.
757 = (3^9 - 1)/(3^3 - 1) = 111_{3^3} = 111_27.
262657 = (2^27 - 1)/(2^9 - 1) = 111_{2^9} = 111_512.
655357 = (2^32 - 1)/(2^16 - 1) = 11_{2^16} = 11_655356.
4432676798593 = (2^49 - 1)/(2^7 - 1) = 1111111_{2^7} = 1111111_128.
5559917315850179173 = (11^27 - 1)/(11^9 - 1) = 111_{11^3} = 111_1331.
227376585863531112677002031251 = (5^49 - 1)/(5^7 - 1) = 1111111_{5^7}.
467056170954468301850494793701001 = (43^25 - 1)/(43^5 - 1) = 11111_{43^5}.
36241275390490156321975496980895092369525753 = (263^27 - 1)/(263^9 - 1).
284661951906193731091845096405947222295673201 = (167^25 - 1)/(167^5 - 1).
		

Crossrefs

Equals A003424 \ A023195.

Extensions

a(9)-a(16) from Don Reble, Jul 28 2022
a(17)-a(20) from Don Reble, Mar 21 2023
Showing 1-8 of 8 results.