cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A003596 Numbers of the form 2^i * 11^j.

Original entry on oeis.org

1, 2, 4, 8, 11, 16, 22, 32, 44, 64, 88, 121, 128, 176, 242, 256, 352, 484, 512, 704, 968, 1024, 1331, 1408, 1936, 2048, 2662, 2816, 3872, 4096, 5324, 5632, 7744, 8192, 10648, 11264, 14641, 15488, 16384, 21296, 22528, 29282, 30976, 32768
Offset: 1

Views

Author

Keywords

Comments

A204455(11*a(n)) = 11, and only for these numbers. - Wolfdieter Lang, Feb 04 2012

Crossrefs

Programs

  • GAP
    Filtered([1..33000],n->PowerMod(22,n,n)=0); # Muniru A Asiru, Mar 19 2019
    
  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a003596 n = a003596_list !! (n-1)
    a003596_list = f $ singleton (1,0,0) where
       f s = y : f (insert (2 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
    
  • Magma
    [n: n in [1..2*10^5] | PrimeDivisors(n) subset [2, 11]]; // Vincenzo Librandi, Jun 27 2016
    
  • Mathematica
    fQ[n_] := PowerMod[22,n,n]==0; Select[Range[40000], fQ] (* Vincenzo Librandi, Feb 04 2012 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(11),N=11^n;while(N<=lim,listput(v,N);N<<=1));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • Python
    from sympy import integer_log
    def A003596(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((x//11**i).bit_length() for i in range(integer_log(x,11)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 25 2025

Formula

The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(22*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
Sum_{n>=1} 1/a(n) = (2*11)/((2-1)*(11-1)) = 11/5. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(2)*log(11)*n)) / sqrt(22). - Vaclav Kotesovec, Sep 23 2020

A003598 Numbers of the form 5^i * 11^j.

Original entry on oeis.org

1, 5, 11, 25, 55, 121, 125, 275, 605, 625, 1331, 1375, 3025, 3125, 6655, 6875, 14641, 15125, 15625, 33275, 34375, 73205, 75625, 78125, 161051, 166375, 171875, 366025, 378125, 390625, 805255, 831875, 859375, 1771561, 1830125, 1890625
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    Filtered([1..2*10^6],n->PowerMod(55,n,n)=0); # Muniru A Asiru, Mar 19 2019
    
  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a003598 n = a003598_list !! (n-1)
    a003598_list = f $ singleton (1,0,0) where
       f s = y : f (insert (5 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
    
  • Magma
    [n: n in [1..2*10^6] | PrimeDivisors(n) subset [5, 11]]; // Vincenzo Librandi, Jun 27 2016
    
  • Mathematica
    Take[Union[(5^#[[1]] 11^#[[2]])&/@Tuples[Range[0,20],{2}]],50]  (* Harvey P. Dale, Dec 26 2010 *)
    fQ[n_]:=PowerMod[55, n, n] == 0; Select[Range[2*10^6], fQ] (* Vincenzo Librandi, Jun 27 2016 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(11),N=11^n;while(N<=lim,listput(v,N);N*=5));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • Sage
    [n for n in (1..2*10^6) if n%55 in {0, 1, 5, 11, 15, 20, 25, 45} and all(x in {5,11} for x in prime_factors(n))] # F. Chapoton, Mar 16 2020

Formula

An asymptotic formula for a(n) is roughly 1/sqrt(55)*exp(sqrt(2*log(5)*log(11)*n)). - Benoit Cloitre, Mar 08 2002
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(55*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
Sum_{n>=1} 1/a(n) = (5*11)/((5-1)*(11-1)) = 11/8. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(5)*log(11)*n)) / sqrt(55). - Vaclav Kotesovec, Sep 23 2020

A003597 Numbers of the form 3^i*11^j.

Original entry on oeis.org

1, 3, 9, 11, 27, 33, 81, 99, 121, 243, 297, 363, 729, 891, 1089, 1331, 2187, 2673, 3267, 3993, 6561, 8019, 9801, 11979, 14641, 19683, 24057, 29403, 35937, 43923, 59049, 72171, 88209, 107811, 131769, 161051, 177147, 216513, 264627, 323433
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    Filtered([1..324000],n->PowerMod(33,n,n)=0); # Muniru A Asiru, Mar 19 2019
  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a003597 n = a003597_list !! (n-1)
    a003597_list = f $ singleton (1,0,0) where
       f s = y : f (insert (3 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
    
  • Magma
    [n: n in [1..4*10^5] | PrimeDivisors(n) subset [3, 11]]; // Vincenzo Librandi, Jun 27 2016
    
  • Mathematica
    fQ[n_]:=PowerMod[33, n, n] == 0; Select[Range[4*10^5], fQ] (* Vincenzo Librandi, Jun 27 2016 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(11),N=11^n;while(N<=lim,listput(v,N);N*=3));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    

Formula

The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(33*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
Sum_{n>=1} 1/a(n) = (3*11)/((3-1)*(11-1)) = 33/20. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(3)*log(11)*n)) / sqrt(33). - Vaclav Kotesovec, Sep 23 2020

A108090 Numbers of the form (11^i)*(13^j).

Original entry on oeis.org

1, 11, 13, 121, 143, 169, 1331, 1573, 1859, 2197, 14641, 17303, 20449, 24167, 28561, 161051, 190333, 224939, 265837, 314171, 371293, 1771561, 2093663, 2474329, 2924207, 3455881, 4084223, 4826809, 19487171, 23030293, 27217619
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 03 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a108090 n = a108090_list !! (n-1)
    a108090_list = f $ singleton (1,0,0) where
       f s = y : f (insert (11 * y, i + 1, j) $ insert (13 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
    
  • Magma
    [n: n in [1..10^7] | PrimeDivisors(n) subset [11, 13]]; // Vincenzo Librandi, Jun 27 2016
    
  • Mathematica
    mx = 3*10^7; Sort@ Flatten@ Table[ 11^i*13^j, {i, 0, Log[11, mx]}, {j, 0, Log[13, mx/11^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
    fQ[n_]:=PowerMod[143, n, n] == 0; Select[Range[2 10^7], fQ] (* Vincenzo Librandi, Jun 27 2016 *)
  • PARI
    list(lim)=my(v=List(),t); for(j=0,logint(lim\=1,13), t=13^j; while(t<=lim, listput(v,t); t*=11)); Set(v) \\ Charles R Greathouse IV, Aug 29 2016
    
  • Python
    from sympy import integer_log
    def A108090(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//13**i,11)[0]+1 for i in range(integer_log(x,13)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 25 2025

Formula

Sum_{n>=1} 1/a(n) = (11*13)/((11-1)*(13-1)) = 143/120. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(11)*log(13)*n)) / sqrt(143). - Vaclav Kotesovec, Sep 23 2020

A025632 Numbers of form 7^i*10^j, with i, j >= 0.

Original entry on oeis.org

1, 7, 10, 49, 70, 100, 343, 490, 700, 1000, 2401, 3430, 4900, 7000, 10000, 16807, 24010, 34300, 49000, 70000, 100000, 117649, 168070, 240100, 343000, 490000, 700000, 823543, 1000000, 1176490, 1680700, 2401000, 3430000, 4900000, 5764801, 7000000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a025632 n = a025632_list !! (n-1)
    a025632_list = f $ singleton (1,0,0) where
       f s = y : f (insert (7 * y, i + 1, j) $ insert (10 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
    
  • Mathematica
    n = 10^6; Flatten[Table[7^i*10^j, {i, 0, Log[7, n]}, {j, 0, Log10[n/7^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)
  • PARI
    list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 10), N=10^n; while(N<=lim, listput(v, N); N*=7)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018

Formula

Sum_{n>=1} 1/a(n) = (7*10)/((7-1)*(10-1)) = 35/27. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(7)*log(10)*n)) / sqrt(70). - Vaclav Kotesovec, Sep 25 2020
a(n) = 7^A025671(n) * 10^A025689(n). - R. J. Mathar, Jul 06 2025

A107326 Numbers of the form (2^i)*(13^j).

Original entry on oeis.org

1, 2, 4, 8, 13, 16, 26, 32, 52, 64, 104, 128, 169, 208, 256, 338, 416, 512, 676, 832, 1024, 1352, 1664, 2048, 2197, 2704, 3328, 4096, 4394, 5408, 6656, 8192, 8788, 10816, 13312, 16384, 17576, 21632, 26624, 28561, 32768, 35152, 43264, 53248, 57122
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), May 21 2005

Keywords

Comments

A204455(13*a(n)) = 13, and only for these numbers. - Wolfdieter Lang, Feb 04 2012

Crossrefs

Programs

  • Mathematica
    fQ[n_] := PowerMod[26,n,n]==0; Select[Range[60000],fQ] (* Vincenzo Librandi, Feb 04 2012 *)
    mx = 60000; Sort@ Flatten@ Table[2^i*13^j, {i, 0, Log[2, mx]}, {j, 0, Log[13, mx/2^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
  • PARI
    list(lim)=my(v=List(),N); for(n=0,log(lim)\log(13),N=13^n; while(N<=lim,listput(v,N);N<<=1)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011

Formula

Sum_{n>=1} 1/a(n) = (2*13)/((2-1)*(13-1)) = 13/6. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(2)*log(13)*n)) / sqrt(26). - Vaclav Kotesovec, Sep 23 2020

A107988 Numbers of the form (4^i)*(11^j), with i, j >= 0.

Original entry on oeis.org

1, 4, 11, 16, 44, 64, 121, 176, 256, 484, 704, 1024, 1331, 1936, 2816, 4096, 5324, 7744, 11264, 14641, 16384, 21296, 30976, 45056, 58564, 65536, 85184, 123904, 161051, 180224, 234256, 262144, 340736, 495616, 644204, 720896, 937024, 1048576
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 12 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a107988 n = a107988_list !! (n-1)
    a107988_list = f $ singleton (1,0,0) where
       f s = y : f (insert (4 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
  • Mathematica
    n = 10^6; Flatten[Table[4^i*11^j, {i, 0, Log[4, n]}, {j, 0, Log[11, n/4^i]}]] // Sort (* Amiram Eldar, Sep 24 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (4*11)/((4-1)*(11-1)) = 22/15. - Amiram Eldar, Sep 24 2020
a(n) ~ exp(sqrt(2*log(4)*log(11)*n)) / sqrt(44). - Vaclav Kotesovec, Sep 24 2020

A025616 Numbers of form 3^i*10^j, with i, j >= 0.

Original entry on oeis.org

1, 3, 9, 10, 27, 30, 81, 90, 100, 243, 270, 300, 729, 810, 900, 1000, 2187, 2430, 2700, 3000, 6561, 7290, 8100, 9000, 10000, 19683, 21870, 24300, 27000, 30000, 59049, 65610, 72900, 81000, 90000, 100000, 177147, 196830, 218700, 243000, 270000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a025616 n = a025616_list !! (n-1)
    a025616_list = f $ singleton (1,0,0) where
       f s = y : f (insert (3 * y, i + 1, j) $ insert (10 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
    
  • Mathematica
    n = 10^6; Flatten[Table[3^i*10^j, {i, 0, Log[3, n]}, {j, 0, Log10[n/3^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)
  • PARI
    list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 10), N=10^n; while(N<=lim, listput(v, N); N*=3)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018
    
  • Python
    from sympy import integer_log
    def A025616(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//10**i,3)[0]+1 for i in range(integer_log(x,10)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 25 2025

Formula

Sum_{n>=1} 1/a(n) = (3*10)/((3-1)*(10-1)) = 5/3. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(3)*log(10)*n)) / sqrt(30). - Vaclav Kotesovec, Sep 25 2020
a(n) = 3^A025644(n) *10^A025685(n). - R. J. Mathar, Jul 06 2025

A107364 Numbers of the form (3^i)*(13^j).

Original entry on oeis.org

1, 3, 9, 13, 27, 39, 81, 117, 169, 243, 351, 507, 729, 1053, 1521, 2187, 2197, 3159, 4563, 6561, 6591, 9477, 13689, 19683, 19773, 28431, 28561, 41067, 59049, 59319, 85293, 85683, 123201, 177147, 177957, 255879, 257049, 369603, 371293, 531441
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), May 23 2005

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10^7] | PrimeDivisors(n) subset [3, 13]]; // Vincenzo Librandi, Jun 27 2016
  • Mathematica
    mx = 540000; Sort@ Flatten@ Table[3^i*13^j, {i, 0, Log[3, mx]}, {j, 0, Log[13, mx/3^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
    fQ[n_]:=PowerMod[39, n, n] == 0; Select[Range[2 10^7], fQ] (* Vincenzo Librandi, Jun 27 2016 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(13),N=13^n;while(N<=lim,listput(v,N);N*=3));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    

Formula

Sum_{n>=1} 1/a(n) = (3*13)/((3-1)*(13-1)) = 13/8. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(3)*log(13)*n)) / sqrt(39). - Vaclav Kotesovec, Sep 23 2020

A107788 Numbers of the form (8^i)*(11^j), with i, j >= 0.

Original entry on oeis.org

1, 8, 11, 64, 88, 121, 512, 704, 968, 1331, 4096, 5632, 7744, 10648, 14641, 32768, 45056, 61952, 85184, 117128, 161051, 262144, 360448, 495616, 681472, 937024, 1288408, 1771561, 2097152, 2883584, 3964928, 5451776, 7496192, 10307264
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 14 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a107788 n = a107788_list !! (n-1)
    a107788_list = f $ singleton (1,0,0) where
       f s = y : f (insert (8 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
  • Mathematica
    Take[Union[8^First[#]*11^Last[#]&/@Tuples[Range[0,20],2]],40] (* Harvey P. Dale, Jan 17 2015 *)
    n = 10^6; Flatten[Table[8^i*11^j, {i, 0, Log[8, n]}, {j, 0, Log[11, n/8^i]}]] // Sort (* Amiram Eldar, Oct 07 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (8*11)/((8-1)*(11-1)) = 44/35. - Amiram Eldar, Oct 07 2020
a(n) ~ exp(sqrt(2*log(8)*log(11)*n)) / sqrt(88). - Vaclav Kotesovec, Oct 07 2020
Showing 1-10 of 20 results. Next