A003627 Primes of the form 3n-1.
2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- A. Granville and G. Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- Eric Weisstein's World of Mathematics, Eisenstein Prime
- Kenneth S. Williams, 3 as a Ninth Power (mod p), Math. Scand., Vol 35 (1974), 309-317.
- Index to sequences related to decomposition of primes in quadratic fields
Crossrefs
Programs
-
Haskell
a003627 n = a003627_list !! (n-1) a003627_list = filter ((== 2) . (`mod` 3)) a000040_list -- Reinhard Zumkeller, Oct 30 2011
-
Magma
[n: n in PrimesUpTo(720) | n mod 3 eq 2]; // Bruno Berselli, Apr 05 2011
-
Maple
t1 := {}; for n from 0 to 500 do if isprime(3*n+2) then t1 := {op(t1),3*n+2}; fi; od: A003627 := convert(t1,list);
-
Mathematica
Select[Range[-1, 600, 3], PrimeQ[#] &] (* Vincenzo Librandi, Jun 17 2015 *) Select[Prime[Range[200]],Mod[#,3]==2&] (* Harvey P. Dale, Jan 31 2023 *)
-
PARI
is(n)=n%3==2 && isprime(n) \\ Charles R Greathouse IV, Mar 20 2013
Formula
From R. J. Mathar, Apr 03 2011: (Start)
Comments