A003946 Expansion of (1+x)/(1-3*x).
1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395628, 172186884, 516560652, 1549681956, 4649045868, 13947137604, 41841412812, 125524238436, 376572715308, 1129718145924
Offset: 0
Examples
G.f. = 1 + 4*x + 12*x^2 + 36*x^3 + 108*x^4 + 324*x^5 + 972*x^6 + 2916*x^7 + ...
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, (an + b)-color compositions, arXiv:1707.07798 [math.CO], 2017.
- Nicolas Bonichon and Pierre-Jean Morel, Baxter d-permutations and other pattern avoiding classes, arXiv:2202.12677 [math.CO], 2022.
- D. J. Broadhurst, On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory, arXiv:hep-th/9604128, 1996.
- John Elias, Illustration: Sierpinski Hexagrams
- I. M. Gessel and Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013) 13.4.5
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 305
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Amya Luo, Pattern Avoidance in Nonnesting Permutations, Undergraduate Thesis, Dartmouth College (2024). See p. 3.
- A. M. Nemirovsky et al., Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.
- Nathan Sun, On d-permutations and Pattern Avoidance Classes, arXiv:2208.08506 [math.CO], 2022.
- Eric Weisstein's World of Mathematics, Maximal Clique.
- Eric Weisstein's World of Mathematics, Sierpiński Gasket Graph.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (3).
- Index entries for sequences related to trees
Programs
-
Magma
[1] cat [4*3^(n-1): n in [1..25]]; // Vincenzo Librandi, Dec 11 2012
-
Maple
if n = 0 then 1 else 4*3^(n-1); fi;
-
Mathematica
Join[{1}, 4 3^Range[0, 30]] (* Vladimir Joseph Stephan Orlovsky, Jun 14 2009 *) Join[{1}, NestList[3# &, 4, 30]] (* Harvey P. Dale, Nov 30 2011 *) CoefficientList[Series[(1 + x)/(1 - 3 x), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 11 2012 *) Join[{1}, LinearRecurrence[{3}, {4}, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
-
Maxima
A003946[n]:=if n<1 then 1 else 4*3^(n-1)$ makelist(A003946[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
-
PARI
{a(n) = if( n<1, n==0, 4 * 3^(n-1))}; /* Michael Somos, Jun 18 2002 */
-
PARI
Vec((1+x)/(1-3*x) + O(x^100)) \\ Altug Alkan, Dec 07 2015
Formula
a(n) = floor(4*3^(n-1)). - Michael Somos, Jun 18 2002
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 2. - Philippe Deléham, Jul 10 2005
The Hankel transform of this sequence is [1,-4,0,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007
a(n + 1) = (((1 + sqrt(-11))/2)^n + ((1 - sqrt(-11))/2)^n)^2 - (((1 + sqrt(-11))/2)^n - ((1 - sqrt(-11))/2)^n)^2. - Raphie Frank, Dec 07 2015
From Mario C. Enriquez, Apr 01 2017: (Start)
(L(a(n+k)) - 1)/a(n) reduces to the form C/a(n-1), where n > 1, k >= 0, L(a(n)) is the a(n)-th Lucas number and C = (L(a(n+k)) - 1)/3.
(L(a(n+k)) - 1)/3 mod (L(a(n)) - 1)/3 = (L(a(n)) - 1)/3 - 1, where n >= 1, k >= 0 and L(a(n)) is the a(n)-th Lucas number. (End)
E.g.f.: (4*exp(3*x) - 1)/3. - Stefano Spezia, Jan 31 2025
Extensions
Additional comments from Michael Somos, Jun 18 2002
Edited by N. J. A. Sloane, Dec 04 2009
Comments