cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004187 a(n) = 7*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 7, 48, 329, 2255, 15456, 105937, 726103, 4976784, 34111385, 233802911, 1602508992, 10983760033, 75283811239, 516002918640, 3536736619241, 24241153416047, 166151337293088, 1138818207635569, 7805576116155895, 53500214605455696, 366695926122033977
Offset: 0

Views

Author

Keywords

Comments

Define the sequence T(a_0,a_1) by a_{n+2} is the greatest integer such that a_{n+2}/a_{n+1}= 0 . A004187 (with initial 0 omitted) is T(1,7).
This is a divisibility sequence.
For n>=2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 7's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
a(n) and b(n) := A056854(n) are the proper and improper nonnegative solutions of the Pell equation b(n)^2 - 5*(3*a(n))^2 = +4. see the cross-reference to A056854 below. - Wolfdieter Lang, Jun 26 2013
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,2,3,4,5,6}. - Milan Janjic, Jan 25 2015
The digital root is A253298, which shares its digital root with A253368. - Peter M. Chema, Jul 04 2016
Lim_{n->oo} a(n+1)/a(n) = 2 + 3*phi = 1+ A090550 = 6.854101... - Wolfdieter Lang, Nov 16 2023

Examples

			a(2) = 7*a(1) - a(0) = 7*7 - 1 = 48. - _Michael B. Porter_, Jul 04 2016
		

Crossrefs

Cf. A000027, A001906, A001353, A004254, A001109, A049685, A033888. a(n)=sqrt((A056854(n)^2 - 4)/45).
Second column of array A028412.

Programs

  • Magma
    [Fibonacci(4*n)/3 : n in [0..30]]; // Vincenzo Librandi, Jun 07 2011
    
  • Magma
    /* By definition: */ [n le 2 select n-1 else 7*Self(n-1)-Self(n-2): n in [1..23]]; // Bruno Berselli, Dec 24 2012
  • Maple
    seq(combinat:-fibonacci(4*n)/3, n = 0 .. 30); # Robert Israel, Jan 26 2015
  • Mathematica
    LinearRecurrence[{7,-1},{0,1},30] (* Harvey P. Dale, Jul 13 2011 *)
    CoefficientList[Series[x/(1 - 7*x + x^2), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 23 2012 *)
  • Maxima
    a[0]:0$ a[1]:1$ a[n]:=7*a[n-1] - a[n-2]$ A004187(n):=a[n]$ makelist(A004187(n),n,0,30); /* Martin Ettl, Nov 11 2012 */
    
  • MuPAD
    numlib::fibonacci(4*n)/3 $ n = 0..25; // Zerinvary Lajos, May 09 2008
    
  • PARI
    a(n)=fibonacci(4*n)/3 \\ Charles R Greathouse IV, Mar 09 2012
    
  • PARI
    concat(0, Vec(x/(1-7*x+x^2) + O(x^99))) \\ Altug Alkan, Jul 03 2016
    
  • Sage
    [lucas_number1(n,7,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [fibonacci(4*n)/3 for n in range(0, 21)] # Zerinvary Lajos, May 15 2009
    

Formula

G.f.: x/(1-7*x+x^2).
a(n) = F(4*n)/3 = A033888(n)/3, where F=A000045 (the Fibonacci sequence).
a(n) = S(2*n-1, sqrt(9))/sqrt(9) = S(n-1, 7); S(n, x) := U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.
a(n) = Sum_{i = 0..n-1} C(2*n-1-i, i)*5^(n-i-1). - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
[A049685(n-1), a(n)] = [1,5; 1,6]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
a(n) = A167816(4*n). - Reinhard Zumkeller, Nov 13 2009
a(n) = (((7+sqrt(45))/2)^n-((7-sqrt(45))/2)^n)/sqrt(45). - Noureddine Chair, Aug 31 2011
a(n+1) = Sum_{k = 0..n} A101950(n,k)*6^k. - Philippe Deléham, Feb 10 2012
a(n) = (A081072(n)/3)-1. - Martin Ettl, Nov 11 2012
From Peter Bala, Dec 23 2012: (Start)
Product {n >= 1} (1 + 1/a(n)) = (1/5)*(5 + 3*sqrt(5)).
Product {n >= 2} (1 - 1/a(n)) = (1/14)*(5 + 3*sqrt(5)). (End)
From Peter Bala, Apr 02 2015: (Start)
Sum_{n >= 1} a(n)*x^(2*n) = -A(x)*A(-x), where A(x) = Sum_{n >= 1} Fibonacci(2*n)* x^n.
1 + 5*Sum_{n >= 1} a(n)*x^(2*n) = F(x)*F(-x) = G(x)*G(-x), where F(x) = 1 + A(x) and G(x) = 1 + 5*A(x).
1 + Sum_{n >= 1} a(n)*x^(2*n) = H(x)*H(-x) = I(x)*I(-x), where H(x) = 1 + Sum_{n >= 1} Fibonacci(2*n + 3)*x^n and I(x) = 1 + x + x*Sum_{n >= 1} Fibonacci(2*n - 1)*x^n. (End)
E.g.f.: 2*exp(7*x/2)*sinh(3*sqrt(5)*x/2)/(3*sqrt(5)). - Ilya Gutkovskiy, Jul 03 2016
a(n) = Sum_{k = 0..n-1} (-1)^(n+k+1)*9^k*binomial(n+k, 2*k+1). - Peter Bala, Jul 17 2023
a(n) = Sum_{k = 0..floor(n/2)} (-1)^k*7^(n-2*k)*binomial(n-k, k). - Greg Dresden, Aug 03 2024
From Peter Bala, Jul 22 2025: (Start)
The following products telescope:
Product {n >= 2} (1 + (-1)^n/a(n)) = (3/14)*(3 + sqrt(5)).
Product {n >= 1} (1 - (-1)^n/a(n)) = (1/3)*(3 + sqrt(5)).
Product_{n >= 1} (a(2*n) + 1)/(a(2*n) - 1) = (3/5)*sqrt(5). (End)

Extensions

Entry improved by comments from Michael Somos and Wolfdieter Lang, Aug 02 2000