A004273 0 together with odd numbers.
0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131
Offset: 0
Examples
G.f. = x + 3*x^2 + 5*x^3 + 7*x^4 + 9*x^5 + 11*x^6 + 13*x^7 + 15*x^8 + 17*x^9 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Allan Bickle, Structural results on maximal k-degenerate graphs, Discuss. Math. Graph Theory 32 4 (2012), 659-676.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- D. R. Lick and A. T. White, k-degenerate graphs, Canad. J. Math. 22 (1970), 1082-1096.
- Index entries for linear recurrences with constant coefficients, signature (2, -1).
Crossrefs
Cf. A110185, continued fraction expansion of 2*tanh(1/2), and A204877, continued fraction expansion of 3*tanh(1/3). [Bruno Berselli, Jan 26 2012]
Cf. A005408.
Programs
-
GAP
Concatenation([0],List([1,3..141])); # Muniru A Asiru, Jul 28 2018
-
Magma
[2*n-Floor((n+2) mod (n+1)): n in [0..70]]; // Vincenzo Librandi, Sep 21 2011
-
Mathematica
Join[{0}, Range[1, 200, 2]] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2012 *)
-
PARI
a(n)=max(2*n-1,n) \\ Charles R Greathouse IV, May 14 2014
-
Python
def A004273(n): return (n<<1)-1 if n else 0 # Chai Wah Wu, Jul 13 2024
-
Sage
def a(n) : return( dimension_cusp_forms( Gamma0(6), 2*n+2) ); # Michael Somos, Jul 03 2014
Formula
G.f.: x*(1+x)/(-1+x)^2. - R. J. Mathar, Nov 18 2007
a(n) = lodumo_2(A057427(n)). - Philippe Deléham, Apr 26 2009
Euler transform of length 2 sequence [3, -1]. - Michael Somos, Jul 03 2014
a(n) = (4*n - 1 - (-1)^(2^n))/2. - Luce ETIENNE, Jul 11 2015
Comments