cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004302 a(n) = n^2*(n+1)^2*(n+2)/12.

Original entry on oeis.org

0, 1, 12, 60, 200, 525, 1176, 2352, 4320, 7425, 12100, 18876, 28392, 41405, 58800, 81600, 110976, 148257, 194940, 252700, 323400, 409101, 512072, 634800, 780000, 950625, 1149876, 1381212, 1648360, 1955325, 2306400, 2706176, 3159552, 3671745, 4248300, 4895100
Offset: 0

Views

Author

Keywords

Comments

Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 19 2005
a(n-2), n>=3, is the number of ways to have n identical objects in m=3 of altogether n distinguishable boxes (n-3 boxes stay empty). - Wolfdieter Lang, Nov 13 2007
Starting with offset 1 = row sums of triangle A096948 and binomial transform of [1, 11, 37, 55, 38, 10, 0, 0, 0, ...]. - Gary W. Adamson, Aug 08 2008

Examples

			a(3)=60 because n=5 identical balls can be put into m=3 of n=5 distinguishable boxes in binomial(5,3)*(3!/(2!*1!)+ 3!/(1!*2!) ) = 10*(3+3) = 60 ways. The m=3 part partitions of 5, namely (1^2,3) and (1,2^2) specify the filling of each of the 10 possible three-box choices. - _Wolfdieter Lang_, Nov 13 2007
		

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 233, # 11).
  • T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.

Crossrefs

Third column of triangle A103371.
Main diagonal of A103252.

Programs

  • Haskell
    a004302 0 = 0
    a004302 n = a103371 (n + 1) 2 -- Reinhard Zumkeller, Apr 04 2014
    
  • Magma
    [n^2*(n+1)^2*(n+2)/12: n in [0..40]]; // Vincenzo Librandi, May 22 2011
    
  • Maple
    a:=n->n^2*(n+1)^2*(n+2)/12: seq(a(n),n=0..33); # Emeric Deutsch, Jun 19 2005
  • Mathematica
    Table[n^2 (n+1)^2 (n+2)/12,{n,0,30}] (* or *) LinearRecurrence[{6,-15,20, -15,6,-1}, {0,1,12,60,200,525}, 30] (* Harvey P. Dale, Oct 19 2014 *)
  • PARI
    a(n)=n^2*(n+1)^2*(n+2)/12 \\ Charles R Greathouse IV, Oct 07 2015
    
  • SageMath
    def A004302(n): return 3*binomial(n+2,3)^2//(n+2)
    print([A004302(n) for n in range(41)]) # G. C. Greubel, Mar 12 2025

Formula

From Paul Barry, Feb 03 2005: (Start)
G.f.: x*(1 + 6*x + 3*x^2)/(1 - x)^6.
a(n) = C(n, 2)*C(n+1, 3). (End)
a(n) = 3*C(n+2,3)^2/(n+2). - Zerinvary Lajos, May 09 2008
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5. - Harvey P. Dale, Oct 19 2014
a(n) = A000217(n)*A000292(n). - Bruno Berselli, Jan 13 2015
a(n) = Sum_{k=0..n} Sum_{i=0..n} i*C(k+1,k-1). - Wesley Ivan Hurt, Sep 21 2017
a(n) = Sum_{i=0..n} (n+2)*(n-i)^3/3. - Bruno Berselli, Oct 31 2017
From Amiram Eldar, May 29 2022: (Start)
Sum_{n>=1} 1/a(n) = 3*Pi^2 - 57/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 45/2 - Pi^2/2 - 24*log(2). (End)
E.g.f.: exp(x)*x*(12 + 60*x + 54*x^2 + 14*x^3 + x^4)/12. - Stefano Spezia, May 22 2023