A005585
5-dimensional pyramidal numbers: a(n) = n*(n+1)*(n+2)*(n+3)*(2n+3)/5!.
Original entry on oeis.org
1, 7, 27, 77, 182, 378, 714, 1254, 2079, 3289, 5005, 7371, 10556, 14756, 20196, 27132, 35853, 46683, 59983, 76153, 95634, 118910, 146510, 179010, 217035, 261261, 312417, 371287, 438712, 515592, 602888, 701624, 812889, 937839, 1077699, 1233765, 1407406
Offset: 1
G.f. = x + 7*x^2 + 27*x^3 + 77*x^4 + 182*x^5 + 378*x^6 + 714*x^7 + 1254*x^8 + ... - _Michael Somos_, Jun 24 2018
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 797.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000 (first 121 terms from Alexander Adamchuk)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Paul Barry, On the Gap-sum and Gap-product Sequences of Integer Sequences, arXiv:2104.05593 [math.CO], 2021.
- R. K. Guy, Letter to N. J. A. Sloane, Feb 1988
- Milan Janjic, Two Enumerative Functions
- C. H. Karlson and N. J. A. Sloane, Correspondence, 1974
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 15.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- R. P. Stanley and F. Zanello, The Catalan case of Armstrong's conjecture on core partitions, arXiv preprint arXiv:1312.4352 [math.CO], 2013.
- Index entries for sequences related to Chebyshev polynomials.
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
a(n) = ((-1)^(n+1))*
A053120(2*n+3, 5)/16, (1/16 of sixth unsigned column of Chebyshev T-triangle, zeros omitted).
-
I:=[1, 7, 27, 77, 182, 378]; [n le 6 select I[n] else 6*Self(n-1)-15*Self(n-2)+20*Self(n-3)-15*Self(n-4)+6*Self(n-5)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Jun 09 2013
-
[seq(binomial(n+2,6)-binomial(n,6), n=4..45)]; # Zerinvary Lajos, Jul 21 2006
A005585:=(1+z)/(z-1)**6; # Simon Plouffe in his 1992 dissertation
-
With[{c=5!},Table[n(n+1)(n+2)(n+3)(2n+3)/c,{n,40}]] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{1,7,27,77,182,378},40] (* Harvey P. Dale, Oct 04 2011 *)
CoefficientList[Series[(1 + x) / (1 - x)^6, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
-
a(n)=binomial(n+3,4)*(2*n+3)/5 \\ Charles R Greathouse IV, Jul 28 2015
A103371
Number triangle T(n,k) = C(n,n-k)*C(n+1,n-k).
Original entry on oeis.org
1, 2, 1, 3, 6, 1, 4, 18, 12, 1, 5, 40, 60, 20, 1, 6, 75, 200, 150, 30, 1, 7, 126, 525, 700, 315, 42, 1, 8, 196, 1176, 2450, 1960, 588, 56, 1, 9, 288, 2352, 7056, 8820, 4704, 1008, 72, 1, 10, 405, 4320, 17640, 31752, 26460, 10080, 1620, 90, 1, 11, 550, 7425, 39600, 97020
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: 2 1
2: 3 6 1
3: 4 18 12 1
4: 5 40 60 20 1
5: 6 75 200 150 30 1
6: 7 126 525 700 315 42 1
7: 8 196 1176 2450 1960 588 56 1
8: 9 288 2352 7056 8820 4704 1008 72 1
9: 10 405 4320 17640 31752 26460 10080 1620 90 1
... reformatted. - _Wolfdieter Lang_, Jul 31 2017
From _R. J. Mathar_, Mar 29 2013: (Start)
The matrix inverse starts
1;
-2, 1;
9, -6, 1;
-76, 54, -12, 1;
1055, -760, 180, -20, 1;
-21906, 15825, -3800, 450, -30, 1;
636447, -460026, 110775, -13300, 945, -42, 1; (End)
O.g.f. of 4th diagonal [4, 40,200, ...] is G(3, x) = 4*(1 + 3*x + x^2)/(1 - x)^7, from the n = 3 row [1, 3, 1] of A001263. See a comment above. - _Wolfdieter Lang_, Jul 31 2017
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- Per Alexandersson, Svante Linusson, Samu Potka, and Joakim Uhlin, Refined Catalan and Narayana cyclic sieving, arXiv:2010.11157 [math.CO], 2020.
- Paul Barry and A. Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations, J. Int. Seq. 14 (2011), Article 11.3.8.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 16.
- R. Cori and G. Hetyei, Counting genus one partitions and permutations, arXiv:1306.4628 [math.CO], 2013.
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
- A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006), 51-62.
-
a103371 n k = a103371_tabl !! n !! k
a103371_row n = a103371_tabl !! n
a103371_tabl = map reverse a132813_tabl
-- Reinhard Zumkeller, Apr 04 2014
-
/* As triangle */ [[Binomial(n,n-k)*Binomial(n+1,n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 01 2017
-
A103371 := (n,k) -> binomial(n,k)^2*(n+1)/(k+1);
seq(print(seq(A103371(n, k), k=0..n)), n=0..7); # Peter Luschny, Oct 19 2011
-
Flatten[Table[Binomial[n,n-k]Binomial[n+1,n-k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, May 26 2014 *)
CoefficientList[Series[Series[E^(x(1+y))(BesselI[0,2*x*Sqrt[y]]+BesselI[1,2*x*Sqrt[y]]/Sqrt[y]),{x,0,8}],{y,0,8}],{x,y}]*Range[0,8]! (* Natalia L. Skirrow, Apr 14 2025 *)
-
create_list(binomial(n,k)*binomial(n+1,k+1),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
-
for(n=0,10, for(k=0,n, print1(binomial(n,k)*binomial(n+1,k+1), ", "))) \\ G. C. Greubel, Nov 09 2018
A088459
Triangle read by rows: T(n,k) represents the number of lozenge tilings of an (n,1,n)-hexagon which include the non-vertical tile above the main diagonal starting in position k+1.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 1, 3, 6, 6, 3, 1, 1, 4, 12, 18, 18, 12, 4, 1, 1, 5, 20, 40, 60, 60, 40, 20, 5, 1, 1, 6, 30, 75, 150, 200, 200, 150, 75, 30, 6, 1, 1, 7, 42, 126, 315, 525, 700, 700, 525, 315, 126, 42, 7, 1, 1, 8, 56, 196, 588, 1176, 1960, 2450, 2450, 1960, 1176, 588, 196, 56, 8, 1
Offset: 1
Christopher Hanusa (chanusa(AT)washington.edu), Nov 14 2003
For example, the number of tilings of a 4,1,4 hexagon which includes the non-vertical tile above the main diagonal starting in position 3 is T(4,2)=12.
Triangle T(n, k) begins:
[1] 1,1,
[2] 1,2, 2, 1,
[3] 1,3, 6, 6, 3, 1,
[4] 1,4,12, 18, 18, 12, 4, 1,
[5] 1,5,20, 40, 60, 60, 40, 20, 5, 1,
[6] 1,6,30, 75, 150, 200, 200, 150, 75, 30, 6, 1,
[7] 1,7,42,126, 315, 525, 700, 700, 525, 315, 126, 42, 7, 1,
[8] 1,8,56,196, 588,1176,1960,2450,2450,1960,1176,588, 196, 56, 8, 1,
[9] 1,9,72,288,1008,2352,4704,7056,8820,8820,7056,4704,2352,1008,288,72,9,1
-
A088459 := proc(n,k)
binomial(n,ceil(k/2))*binomial(n-1,floor(k/2)) ;
end proc:
seq(seq(A088459(n,k),k=0..2*n-1),n=1..10) ; # R. J. Mathar, Apr 02 2017
-
Table[Binomial[n, Ceiling[k/2]] Binomial[n - 1, Floor[k/2]], {n, 10}, {k, 0, 2 n - 1}] // Flatten (* Eric W. Weisstein, Mar 23 2018 *)
A132813
Triangle read by rows: A001263 * A127648 as infinite lower triangular matrices.
Original entry on oeis.org
1, 1, 2, 1, 6, 3, 1, 12, 18, 4, 1, 20, 60, 40, 5, 1, 30, 150, 200, 75, 6, 1, 42, 315, 700, 525, 126, 7, 1, 56, 588, 1960, 2450, 1176, 196, 8, 1, 72, 1008, 4704, 8820, 7056, 2352, 288, 9, 1, 90, 1620, 10080, 26460, 31752, 17640, 4320, 405, 10
Offset: 0
First few rows of the triangle are:
1;
1, 2;
1, 6, 3;
1, 12, 18, 4;
1, 20, 60, 40, 5;
1, 30, 150, 200, 75, 6;
1, 42, 315, 700, 525, 126, 7;
...
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- N. Alexeev and A. Tikhomirov, Singular Values Distribution of Squares of Elliptic Random Matrices and type-B Narayana Polynomials, arXiv preprint arXiv:1501.04615 [math.PR], 2015.
- C. Athanasiadis and C. Savvidou, The local h-vector of the cluster subdivision of a simplex, arXiv preprint arXiv:1204.0362 [math.CO], 2012.
- Robert. A. Sulanke, Counting Lattice Paths by Narayana Polynomials Electronic J. Combinatorics 7, No. 1, R40, 1-9, 2000.
-
Flat(List([0..10],n->List([0..n], k->(k+1)*Binomial(n+1,k+1)*Binomial(n+1,k)/(n+1)))); # Muniru A Asiru, Feb 26 2019
-
a132813 n k = a132813_tabl !! n !! k
a132813_row n = a132813_tabl !! n
a132813_tabl = zipWith (zipWith (*)) a007318_tabl $ tail a007318_tabl
-- Reinhard Zumkeller, Apr 04 2014
-
/* triangle */ [[(k+1)*Binomial(n+1,k+1)*Binomial(n+1,k)/(n+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 19 2014
-
P := (n, x) -> hypergeom([1-n, -n], [1], x): for n from 1 to 9 do PolynomialTools:-CoefficientList(simplify(P(n,x)),x) od; # Peter Luschny, Nov 26 2014
-
T[n_,k_]=Binomial[n-1,k-1]*Binomial[n,k-1]; Table[Table[T[n,k],{k,1,n}],{n,1,11}]; Flatten[%] (* Roger L. Bagula, Apr 09 2008 *)
P[n_, x_] := HypergeometricPFQ[{1-n, -n}, {1}, x]; Table[CoefficientList[P[n, x], x], {n, 1, 10}] // Flatten (* Jean-François Alcover, Nov 27 2014, after Peter Luschny *)
-
tabl(nn) = {for (n = 1, nn, for (k = 1, n, print1(binomial(n-1, k-1)*binomial(n, k-1) , ", ");););} \\ Michel Marcus, Feb 12 2014
-
def A132813(n,k): return binomial(n,k)*binomial(n+1,k)
print(flatten([[A132813(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 12 2025
A128629
A triangular array generated by moving Pascal sequences to prime positions and embedding new sequences at the nonprime locations. (cf. A007318 and A000040).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 4, 9, 10, 5, 1, 1, 6, 10, 16, 15, 6, 1, 1, 5, 18, 20, 25, 21, 7, 1, 1, 8, 15, 40, 35, 36, 28, 8, 1, 1, 9, 27, 35, 75, 56, 49, 36, 9, 1
Offset: 1
Row six begins 1 6 18 40 75 126 ... because rows two and three are
1 2 3 4 5 6 ...
1 3 6 10 15 21 ...
The array begins
1 1 1 1 1 1 1 1 1 A000012
1 2 3 4 5 6 7 8 9 A000027
1 3 6 10 15 21 28 36 45 A000217
1 4 9 16 25 36 49 64 81 A000290
1 4 10 20 35 56 84 120 165 A000292
1 6 18 40 75 126 196 288 405 A002411
1 5 15 35 70 126 210 330 495 A000332
1 8 27 64 125 216 343 512 729 A000578
1 9 36 100 225 441 784 1296 2025 A000537
1 8 30 80 175 336 588 960 1485 A002417
1 6 21 56 126 252 462 792 1287 A000389
1 12 54 160 375 756 1372 2304 3645 A019582
1 7 28 84 210 462 924 1716 3003 A000579
1 10 45 140 350 756 1470 2640 4455 A027800
1 12 60 200 525 1176 2352 4320 7425 A004302
1 16 81 256 625 1296 2401 4096 6561 A000583
1 8 36 120 330 792 1716 3432 6435 A000580
1 18 108 400 1125 2646 5488 10368 18225 A019584
1 9 45 165 495 1287 3003 6435 12870 A000581
1 16 90 320 875 2016 4116 7680 13365 A119771
1 15 90 350 1050 2646 5880 11880 22275 A001297
1 12 63 224 630 1512 3234 6336 11583 A027810
1 10 55 220 715 2002 5005 11440 24310 A000582
1 24 162 640 1875 4536 9604 18432 32805 A019583
1 16 100 400 1225 3136 7056 14400 27225 A001249
1 14 84 336 1050 2772 6468 13728 27027 A027818
1 27 216 1000 3375 9261 21952 46656 91125 A059827
1 20 135 560 1750 4536 10290 21120 40095 A085284
-
A128629 := proc(n,m) if n = 1 then 1; elif isprime(n) then p := numtheory[pi](n) ; binomial(p+m-1,p) ; else a := 1 ; for p in ifactors(n)[2] do a := a* procname(op(1,p),m)^ op(2,p) ; od: fi; end: # R. J. Mathar, Sep 09 2009
A-number added to each row of the examples by
R. J. Mathar, Sep 09 2009
A004282
a(n) = n*(n+1)^2*(n+2)^2/12.
Original entry on oeis.org
0, 3, 24, 100, 300, 735, 1568, 3024, 5400, 9075, 14520, 22308, 33124, 47775, 67200, 92480, 124848, 165699, 216600, 279300, 355740, 448063, 558624, 690000, 845000, 1026675, 1238328, 1483524, 1766100, 2090175
Offset: 0
-
[n*(n+1)^2*(n+2)^2/12: n in [0..50]]; // Vincenzo Librandi, Feb 09 2012
-
a:= n-> binomial(2+n, 2)*binomial(2+n, 3): seq(a(n), n=0..31); # Zerinvary Lajos, Apr 26 2007
-
Table[n*(n+1)^2*(n+2)^2/12,{n,0,40}] (* Vincenzo Librandi, Feb 09 2012 *)
-
a(n) = binomial(n+2,2)*binomial(n+2,3); \\ Charles R Greathouse IV, Feb 09 2012
A028725
a(n) = floor(n/2) * floor((n-1)/2) * floor((n-2)/2) * floor((n-3)/2) * floor((n-4)/2) / 12.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 3, 12, 24, 60, 100, 200, 300, 525, 735, 1176, 1568, 2352, 3024, 4320, 5400, 7425, 9075, 12100, 14520, 18876, 22308, 28392, 33124, 41405, 47775, 58800, 67200, 81600, 92480, 110976, 124848, 148257, 165699, 194940, 216600, 252700, 279300
Offset: 0
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1).
-
[(&*[Floor((n-j)/2):j in [0..4]])/12: n in [0..60]]; // G. C. Greubel, Apr 08 2022
-
Table[(Times@@Floor/@(n/2-Range[0,4]/2))/12,{n,0,50}] (* or *) LinearRecurrence[ {1,5,-5,-10,10,10,-10,-5,5,1,-1}, {0,0,0,0,0,0,1,3,12,24,60}, 50] (* Harvey P. Dale, Jun 26 2012 *)
-
concat([0,0,0,0,0,0], Vec(x^6*(x^4+2*x^3+4*x^2+2*x+1)/((x-1)^6*(x+1)^5) + O(x^100))) \\ Colin Barker, Mar 01 2015
-
[(1/768)*((-1)^n*(45 -65*n +38*n^2 -10*n^3 +n^4) -45 +193*n -230*n^2 +114*n^3 -25*n^4 +2*n^5) for n in (0..60)] # G. C. Greubel, Apr 08 2022
Original entry on oeis.org
1, 4, 3, 10, 12, 6, 20, 30, 24, 10, 35, 60, 60, 40, 15, 56, 105, 120, 100, 60, 21, 84, 168, 210, 200, 150, 84, 28, 120, 252, 336, 350, 300, 210, 112, 36, 165, 360, 504, 560, 525, 420, 280, 144, 45, 220, 495, 720, 840, 840, 735, 560, 360, 180, 55
Offset: 1
Array begins
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
4, 12, 24, 40, 60, 84, 112, 144, 180, 220, ...
10, 30, 60, 100, 150, 210, 280, 360, 450, 550, ...
20, 60, 120, 200, 300, 420, 560, 720, 900, 1100, ...
35, 105, 210, 350, 525, 735, 980, 1260, 1575, 1925, ...
...
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Intrinsic Properties of a Non-Symmetric Number Triangle, J. Int. Seq., Vol. 26 (2023), Article 23.4.8.
- Joaquín Figueroa, Ivan Gonzalez, and Daniel Salinas-Arizmendi, A Novel Transfer Matrix Framework for Multiple Dirac Delta Potentials, arXiv:2503.23134 [quant-ph], 2025. See pp. 5, 9.
-
A[n_,k_]:=Binomial[n+2,3]Binomial[k+1,2]; Table[A[n-k+1,k],{n,10},{k,n}]//Flatten (* Stefano Spezia, May 21 2023 *)
A192832
Molecular topological indices of the lattice graphs.
Original entry on oeis.org
0, 48, 576, 2880, 9600, 25200, 56448, 112896, 207360, 356400, 580800, 906048, 1362816, 1987440, 2822400, 3916800, 5326848, 7116336, 9357120, 12129600, 15523200, 19636848, 24579456, 30470400, 37440000, 45630000, 55194048, 66298176, 79121280, 93855600
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Lattice Graph
- Eric Weisstein's World of Mathematics, Molecular Topological Index
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
-
List([0..30], n -> 4*n^2*(n+1)*(n-1)^2); # G. C. Greubel, Jan 04 2019
-
[4*n^2*(n+1)*(n-1)^2: n in [1..30]]; // G. C. Greubel, Jan 04 2019
-
Table[4*n^2*(n+1)*(n-1)^2, {n,1,30}] (* G. C. Greubel, Jan 04 2019 *)
-
vector(30, n, 4*n^2*(n+1)*(n-1)^2) \\ G. C. Greubel, Jan 04 2019
-
[4*n^2*(n+1)*(n-1)^2 for n in (1..30)] # G. C. Greubel, Jan 04 2019
Showing 1-9 of 9 results.
Comments