cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A050808 Numbers k such that floor(exp(k)) is prime.

Original entry on oeis.org

1, 2, 18, 50, 127, 141, 267, 310, 2290, 4487, 5391, 14025
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1999

Keywords

Crossrefs

Cf. A050809 (the actual primes), A000149, A040016, A037028, A000227, A004791, A059791, A059792.

Programs

  • Mathematica
    Do[ If[ PrimeQ[ Floor[ \[ExponentialE]^n] ], Print[n] ], {n, 0, 4750} ]
    Select[Range[15000],PrimeQ[Floor[Exp[#]]]&] (* Harvey P. Dale, Oct 16 2012 *)
  • PARI
    is(n)=ispseudoprime(exp(n)\1) \\ Charles R Greathouse IV, Jan 03 2014

Extensions

Corrected by Naohiro Nomoto, Feb 22 2001
More terms from Vladeta Jovovic, Feb 24 2001
More terms from Robert G. Wilson v, May 09 2001
a(11) = 5391 from Eric W. Weisstein, May 01 2006
a(12) from Donovan Johnson, Feb 04 2008

A050809 Primes of the form floor( exp(k) ).

Original entry on oeis.org

2, 7, 65659969, 5184705528587072464087, 14302079958348104463583671072905261080748384225250684971, 17199742630376622641833783925547830057256484050709158699244513
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1999

Keywords

Examples

			a(3) = floor(e^18) = 65659969, which is prime.
		

Crossrefs

Cf. A050808 (values of k), A000149, A040016, A037028, A000227, A004791.

Programs

  • Mathematica
    Select[Table[Floor[Exp[n]], {n, 150}], PrimeQ] (* Jayanta Basu, Jun 01 2013 *)

Extensions

Corrected by Naohiro Nomoto, Feb 22 2001

A004790 Numbers k >= 2 such that if 1 < j < k then (fractional part of log k) < (fractional part of log j).

Original entry on oeis.org

2, 3, 8, 21, 55, 149, 404, 1097, 2981, 162755, 1202605, 3269018, 8886111, 24154953, 178482301, 9744803447, 26489122130, 195729609429, 532048240602, 1446257064292, 3931334297145, 10686474581525, 29048849665248, 78962960182681, 583461742527455, 1586013452313431
Offset: 1

Views

Author

Keywords

Comments

Sequence lists all numbers k > 1 for which the fractional part of log(k) reaches a record low. For n > 1, this can happen only when a(n) = ceiling(e^m) for some positive integer m; see Example section. - Jon E. Schoenfield, May 28 2018

Examples

			From _Jon E. Schoenfield_, May 28 2018: (Start)
k = ceiling(e^m) yields a term for some but not all positive integers m:
.
   m |      k=ceiling(e^m)       |          log(k)
  ---+---------------------------+--------------------------
   1 |                 3 = a(2)  |  1.0986122886681096913...
   2 |                 8 = a(3)  |  2.0794415416798359282...
   3 |                21 = a(4)  |  3.0445224377234229965...
   4 |                55 = a(5)  |  4.0073331852324709186...
   5 |               149 = a(6)  |  5.0039463059454591409...
   6 |               404 = a(7)  |  6.0014148779611500697...
   7 |              1097 = a(8)  |  7.0003344602752302459...
   8 |              2981 = a(9)  |  8.0000140936780714441...
   9 |              8104         |  9.0001130459285193087...
  10 |             22027         | 10.0000242525841575280...
  11 |             59875         | 11.0000143347132163589...
  12 |            162755 = a(10) | 12.0000012815651115743...
  13 |            442414         | 13.0000013742591718739...
  14 |           1202605 = a(11) | 14.0000005952373691014...
  15 |           3269018 = a(12) | 15.0000001919622191103...
  16 |           8886111 = a(13) | 16.0000000539597288735...
  17 |          24154953 = a(14) | 17.0000000102018291255...
  18 |          65659970         | 18.0000000131384387554...
  19 |         178482301 = a(15) | 19.0000000002062542837...
  20 |         485165196         | 20.0000000012165129058...
  21 |        1318815735         | 21.0000000003918555785...
  22 |        3584912847         | 22.0000000002422397629...
  23 |        9744803447 = a(16) | 23.0000000000770767110...
  24 |       26489122130 = a(17) | 24.0000000000059091314...
  25 |       72004899338         | 25.0000000000085289679...
  26 |      195729609429 = a(18) | 26.0000000000008237677...
  27 |      532048240602 = a(19) | 27.0000000000003785057...
  28 |     1446257064292 = a(20) | 28.0000000000003628859...
  29 |     3931334297145 = a(21) | 29.0000000000002436642...
  30 |    10686474581525 = a(22) | 30.0000000000000503302...
  31 |    29048849665248 = a(23) | 31.0000000000000197862...
  32 |    78962960182681 = a(24) | 32.0000000000000038605...
  33 |   214643579785917         | 33.0000000000000043578...
  34 |   583461742527455 = a(25) | 34.0000000000000002032...
  35 |  1586013452313431 = a(26) | 35.0000000000000001714...
  36 |  4311231547115196         | 36.0000000000000001792...
.
For k = ceiling(e^m) > 2, 0 < frac(log(k)) < e^(-m), so frac(log(k)) must approach 0 as m increases, but it does not do so monotonically; at values of m where frac(log(k)) is particularly small relative to e^(-m) (e.g., at m = 8 or m = 19), the next term after a(n) = k = ceiling(e^m) can be as large as a(n+1) = ceiling(e^(ceiling(-log(frac(log(k)))))).
(End)
		

Crossrefs

Cf. A004791.

Programs

  • PARI
    lista(n) = {last = frac(log(2));for (k=2, n, new = frac(log(k)); if (new < last, print1 (k, ", "); last = new;););} \\ Michel Marcus, Mar 21 2013

Extensions

More terms from David W. Wilson
a(24)-a(26) from Jon E. Schoenfield, May 28 2018

A079663 Sequence of the radicands that give the best radical approach to e.

Original entry on oeis.org

1, 2, 3, 6, 7, 19, 20, 148, 403, 1096, 1097, 2980, 2981, 8103, 59874, 162755, 1202603, 1202604, 3269017, 8886110, 8886111, 24154952, 24154953, 65659969, 178482301, 3584912846, 9744803446, 26489122130, 72004899337, 195729609428
Offset: 1

Views

Author

Carlos Alves, Jan 24 2003

Keywords

Comments

Numbers n such that n^(1/m) is closer to e than for previous n. m is given by the Floor/Ceiling of Log[n].
Each group of entries exceed the previous group by e^k where k is an integer.

Examples

			e-1^1 > e-2^1 > 3^1-e > e-6^(1/2) > e-7^(1/2) > e-19^(1/3) > e-20^(1/3) > ...
		

Crossrefs

Programs

  • Mathematica
    ls = {}; mx = 1; Do[mn = Min[Abs[{n^(1/Floor[Log[n]]) - E, E - n^(1/Ceiling[Log[n]])}]]; If[mn < mx, mx = mn; AppendTo[ls, {n, mx}]], {n, 3, 500000}]; N[ls] // TableForm

Extensions

Edited and extended by Robert G. Wilson v, Jan 24 2003
Showing 1-4 of 4 results.