A005260 a(n) = Sum_{k = 0..n} binomial(n,k)^4.
1, 2, 18, 164, 1810, 21252, 263844, 3395016, 44916498, 607041380, 8345319268, 116335834056, 1640651321764, 23365271704712, 335556407724360, 4854133484555664, 70666388112940818, 1034529673001901732, 15220552520052960516, 224929755893153896200, 3337324864503769353060
Offset: 0
Examples
G.f. = 1 + 2*x + 18*x^2 + 164*x^3 + 1810*x^4 + 21252*x^5 + 263844*x^6 + ...
References
- H. W. Gould, Combinatorial Identities, Morgantown, 1972, (X.14), p. 79.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..834 (terms 0..250 from Jason Kimberley)
- B. Adamczewski, J. P. Bell, and E. Delaygue, Algebraic independence of G-functions and congruences "a la Lucas", arXiv preprint arXiv:1603.04187 [math.NT], 2016.
- Hacene Belbachir and Yassine Otmani, A Strehl Version of Fourth Franel Sequence, arXiv:2012.02563 [math.CO], 2020.
- F. Beukers, Another congruence for the Apéry numbers, J. Number Theory 25 (1987), no. 2, 201-210.
- W. Y. C. Chen, Q.-H. Hou, and Y-P. Mu, A telescoping method for double summations, J. Comp. Appl. Math. 196 (2006) 553-566, eq (5.5).
- S. Cooper, Sporadic sequences, modular forms and new series for 1/pi, Ramanujan J. (2012).
- M. Coster, Email, Nov 1990
- E. Delaygue, Arithmetic properties of Apéry-like numbers, arXiv preprint arXiv:1310.4131 [math.NT], 2013.
- C. Elsner, On recurrence formulas for sums involving binomial coefficients, Fib. Q., 43,1 (2005), 31-45.
- Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See s10 p. 3.
- Darij Grinberg, Introduction to Modern Algebra (UMN Spring 2019 Math 4281 Notes), University of Minnesota (2019).
- Timothy Huber, Daniel Schultz, and Dongxi Ye, Ramanujan-Sato series for 1/pi, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.
- Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5.
- Robert Osburn, Armin Straub, and Wadim Zudilin, A modular supercongruence for 6F5: an Apéry-like story, arXiv:1701.04098 [math.NT], 2017.
- M. A. Perlstadt, Some Recurrences for Sums of Powers of Binomial Coefficients, Journal of Number Theory 27 (1987), pp. 304-309.
- V. Strehl, Recurrences and Legendre transform, Séminaire Lotharingien de Combinatoire, B29b (1992), 22 pp.
- Zhi-Wei Sun, Open conjectures on congruences, Nanjing Univ. J. Math. Biquarterly 36(2019), no.1, 1-99. (Cf. Conjectures 49-51.)
- Eric Weisstein's World of Mathematics, Binomial Sums
- Mark C. Wilson, Diagonal asymptotics for products of combinatorial classes, preprint of Combinatorics, Probability and Computing, 24(1), 2015, 354-372.
- Jin Yuan, Zhi-Juan Lu, and Asmus L. Schmidt, On recurrences for sums of powers of binomial coefficients, J. Numb. Theory 128 (2008) 2784-2794.
Crossrefs
Column k=4 of A309010.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Sum_{k = 0..n} C(n,k)^m for m = 1..12: A000079, A000984, A000172, A005260, A005261, A069865, A182421, A182422, A182446, A182447, A342294, A342295.
Row sums of A202750.
Programs
-
Maple
A005260 := proc(n) add( (binomial(n,k))^4,k=0..n) ; end proc: seq(A005260(n),n=0..10) ; # R. J. Mathar, Nov 19 2012
-
Mathematica
Table[Sum[Binomial[n, k]^4, {k, 0, n}], {n, 0, 20}] (* Wesley Ivan Hurt, Mar 09 2014 *)
-
PARI
{a(n) = sum(k=0, n, binomial(n, k)^4)};
-
Python
def A005260(n): m, g = 1, 0 for k in range(n+1): g += m m = m*(n-k)**4//(k+1)**4 return g # Chai Wah Wu, Oct 04 2022
Formula
a(n) ~ 2^(1/2)*Pi^(-3/2)*n^(-3/2)*2^(4*n). - Joe Keane (jgk(AT)jgk.org), Jun 21 2002
D-finite with recurrence: n^3*a(n) = 2*(2*n - 1)*(3*n^2 - 3*n + 1)*a(n-1) + (4*n - 3)*(4*n - 4)*(4*n - 5)*a(n-2). [Yuan]
G.f.: 5*hypergeom([1/8, 3/8],[1], (4/5)*((1-16*x)^(1/2)+(1+4*x)^(1/2))*(-(1-16*x)^(1/2)+(1+4*x)^(1/2))^5/(2*(1-16*x)^(1/2)+3*(1+4*x)^(1/2))^4)^2/(2*(1-16*x)^(1/2)+3*(1+4*x)^(1/2)). - Mark van Hoeij, Oct 29 2011
1/Pi = sqrt(15)/18 * Sum_{n >= 0} a(n)*(4*n + 1)/36^n (Cooper, equation (5)) = sqrt(15)/18 * Sum_{n >= 0} a(n)*A016813(n)/A009980(n). - Jason Kimberley, Nov 26 2012
0 = (-x^2 + 12*x^3 + 64*x^4)*y''' + (-3*x + 54*x^2 + 384*x^3)*y'' + (-1 + 40*x + 444*x^2)*y' + (2 + 60*x)*y, where y is g.f. - Gheorghe Coserea, Jul 13 2016
For r a nonnegative integer, Sum_{k = r..n} C(k,r)^4*C(n,k)^4 = C(n,r)^4*a(n-r), where we take a(n) = 0 for n < 0. - Peter Bala, Jul 27 2016
a(n) = hypergeom([-n, -n, -n, -n], [1, 1, 1], 1). - Peter Luschny, Jul 27 2016
Sum_{n>=0} a(n) * x^n / (n!)^4 = (Sum_{n>=0} x^n / (n!)^4)^2. - Ilya Gutkovskiy, Jul 17 2020
a(n) = Sum_{k=0..n} C(n,k)*C(n+k,k)*C(2k,k)*C(2n-2k,n-k)*(-1)^(n-k). This can be proved via the Zeilberger algorithm. - Zhi-Wei Sun, Aug 23 2020
a(n) = (-1)^n*binomial(2*n, n)*hypergeom([1/2, -n, -n, n + 1], [1, 1, 1/2 - n], 1). - Peter Luschny, Aug 24 2020
a(n) = Sum_{k=0..n} binomial(n,k)^2*binomial(2*k,n)*binomial(2*n-k,n) [Theorem 1 in Belbachir and Otmani]. - Michel Marcus, Dec 06 2020
a(n) = [x^n] (1 - x)^(2*n) P(n,(1 + x)/(1 - x))^2, where P(n,x) denotes the n-th Legendre polynomial. See Gould, p. 66. This formula is equivalent to the binomial sum identity of Zhi-Wei Sun given above. - Peter Bala, Mar 24 2022
From Peter Bala, Oct 31 2024: (Start)
For n >= 1, a(n) = 2 * Sum_{k = 0..n-1} binomial(n, k)^3 * binomial(n-1, k).
For n >= 1, a(n) = 2 * hypergeom([-n, -n, -n, -n + 1], [1, 1, 1], 1). (End)
G.f.: Sum_{k>=0} Sum_{l=0..p*k} Sum_{m=0..l} (-1)^m*binomial(p*k+1,m)*binomial(l+k-m,k)^p*x^(l+k)/(1-x)^(p*k+1), where p = 4. - Miles Wilson, Apr 12 2025
Extensions
Edited by Michael Somos, Aug 09 2002
Minor edits by Vaclav Kotesovec, Aug 28 2014
Comments