cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A056635 Difference between length (A005341) and sum of digits (A004977) of n-th term in Look and Say Sequence (A005150).

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 5, 6, 9, 12, 18, 22, 30, 40, 54, 72, 93, 120, 157, 203, 271, 364, 473, 612, 806, 1062, 1388, 1804, 2349, 3057, 4001, 5224, 6812, 8874, 11582, 15065, 19661, 25647, 33393, 43509, 56738, 73989, 96469, 125774, 163943, 213683, 278605
Offset: 1

Views

Author

Robert G. Wilson v, Aug 08 2000

Keywords

Programs

  • Mathematica
    RunLengthEncode[ x_List ] := (Through[ {First, Length}[ #1 ] ] &) /@ Split[ x ]; LookAndSay[ n_, d_:1 ] := NestList[ Flatten[ Reverse /@ RunLengthEncode[ # ] ] &, {d}, n - 1 ]; F[ n_ ] := LookAndSay[ n, 1 ][ [ n ] ]; Table[ Apply[ Plus, F[ n ] ]-Length[ F[ n ] ], {n, 1, 53} ] (* Eric Weisstein *)
    p={8,-10,11,-28,33,-2,-11,-34,11,23,3,-10,0,-3,35,-43,-5,46,11,0,-1,-3,-13,-14,-28,24,20,56,-76,0,-5,-29,59,-9,-26,18,-28,55,-1,-34,-33,-21,51,48,-16,-28,-23,24,31,-37,-9,-9,31,21,-16,-19,-11,5,14,3,-1,-4,-1,6,0,-4,-3,0,5,1,-1,-1,-1,0,0,0,1,0,0}; q={6,-9,9,-18,16,-11,14,-8,1,-5,7,2,8,-14,-5,-5,19,3,-6,-7,-6,16,-7,8,-22,17,-12,7,5,7,-8,4,-7,-9,13,-4,-6,14,-14,19,-7,-13,2,-4,18,0,-1,-4,-12,8,-5,0,8,1,7,-8,-5,-2,3,3,0,0,0,0,-2,-1,0,3,1,-1,-1,-1,1}; gf=Fold[x #1+#2&,0,p]/Fold[x #1+#2&,0,q]; CoefficientList[Series[gf,{x,0,99}],x] (* Peter J. C. Moses, Jun 24 2013 *)

A005150 Look and Say sequence: describe the previous term! (method A - initial term is 1).

Original entry on oeis.org

1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, 31131211131221, 13211311123113112211, 11131221133112132113212221, 3113112221232112111312211312113211, 1321132132111213122112311311222113111221131221, 11131221131211131231121113112221121321132132211331222113112211, 311311222113111231131112132112311321322112111312211312111322212311322113212221
Offset: 1

Views

Author

Keywords

Comments

Method A = "frequency" followed by "digit"-indication.
Also known as the "Say What You See" sequence.
Only the digits 1, 2 and 3 appear in any term. - Robert G. Wilson v, Jan 22 2004
All terms end with 1 (the seed) and, except the third a(3), begin with 1 or 3. - Jean-Christophe Hervé, May 07 2013
Proof that 333 never appears in any a(n): suppose it appears for the first time in a(n); because of "three 3" in 333, it would imply that 333 is also in a(n-1), which is a contradiction. - Jean-Christophe Hervé, May 09 2013
This sequence is called "suite de Conway" in French (see Wikipédia link). - Bernard Schott, Jan 10 2021
Contrary to many accounts (including an earlier comment on this page), Conway did not invent the sequence. The first mention of the sequence appears to date back to the 1977 International Mathematical Olympiad in Belgrade, Yugoslavia. See the Editor's note on page 4, directly preceding Conway's article in Eureka referenced below. - Harlan J. Brothers, May 03 2024

Examples

			The term after 1211 is obtained by saying "one 1, one 2, two 1's", which gives 111221.
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 208.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, section 6.12 Conway's Constant, pp. 452-455.
  • M. Gilpin, On the generalized Gleichniszahlen-Reihe sequence, Manuscript, Jul 05 1994.
  • A. Lakhtakia and C. Pickover, Observations on the Gleichniszahlen-Reihe: An Unusual Number Theory Sequence, J. Recreational Math., 25 (No. 3, 1993), 192-198.
  • Clifford A. Pickover, Computers and the Imagination, St Martin's Press, NY, 1991.
  • Clifford A. Pickover, Fractal horizons: the future use of fractals, New York: St. Martin's Press, 1996. ISBN 0312125992. Chapter 7 has an extensive description of the elements and their properties.
  • C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 486.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, 1999, p. 23.
  • I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 4.

Crossrefs

Cf. A001387, Periodic table: A119566.
Cf. A225224, A221646, A225212 (continuous versions).
Apart from the first term, all terms are in A001637.
About digits: A005341 (number of digits), A022466 (number of 1's), A022467 (number of 2's), A022468 (number of 3's), A004977 (sum of digits), A253677 (product of digits).
About primes: A079562 (number of distinct prime factors), A100108 (terms that are primes), A334132 (smallest prime factor).
Cf. A014715 (Conway's constant), A098097 (terms interpreted as written in base 4).

Programs

  • Haskell
    import List
    say :: Integer -> Integer
    say = read . concatMap saygroup . group . show
    where saygroup s = (show $ length s) ++ [head s]
    look_and_say :: [Integer]
    look_and_say = 1 : map say look_and_say
    -- Josh Triplett (josh(AT)freedesktop.org), Jan 03 2007
    
  • Haskell
    a005150 = foldl1 (\v d -> 10 * v + d) . map toInteger . a034002_row
    -- Reinhard Zumkeller, Aug 09 2012
    
  • Java
    See Paulo Ortolan link.
    
  • Mathematica
    RunLengthEncode[ x_List ] := (Through[ {First, Length}[ #1 ] ] &) /@ Split[ x ]; LookAndSay[ n_, d_:1 ] := NestList[ Flatten[ Reverse /@ RunLengthEncode[ # ] ] &, {d}, n - 1 ]; F[ n_ ] := LookAndSay[ n, 1 ][ [ n ] ]; Table[ FromDigits[ F[ n ] ], {n, 1, 15} ]
    A005150[1] := 1; A005150[n_] := A005150[n] = FromDigits[Flatten[{Length[#], First[#]}&/@Split[IntegerDigits[A005150[n-1]]]]]; Map[A005150, Range[25]] (* Peter J. C. Moses, Mar 21 2013 *)
  • PARI
    A005150(n,a=1)={ while(n--, my(c=1); for(j=2,#a=Vec(Str(a)), if( a[j-1]==a[j], a[j-1]=""; c++, a[j-1]=Str(c,a[j-1]); c=1)); a[#a]=Str(c,a[#a]); a=concat(a)); a }  \\ M. F. Hasler, Jun 30 2011
  • Perl
    $str="1"; for (1 .. shift(@ARGV)) { print($str, ","); @a = split(//,$str); $str=""; $nd=shift(@a); while (defined($nd)) { $d=$nd; $cnt=0; while (defined($nd) && ($nd eq $d)) { $cnt++; $nd = shift(@a); } $str .= $cnt.$d; } } print($str);
    # Jeff Quilici (jeff(AT)quilici.com), Aug 12 2003
    
  • Perl
    # This outputs the first n elements of the sequence, where n is given on the command line.
    $s = 1;
    for (2..shift @ARGV) {
    print "$s, ";
    $s =~ s/(.)\1*/(length $&).$1/eg;
    }
    # Arne 'Timwi' Heizmann (timwi(AT)gmx.net), Mar 12 2008
    print "$s\n";
    
  • Python
    def A005150(n):
        p = "1"
        seq = [1]
        while (n > 1):
            q = ''
            idx = 0 # Index
            l = len(p) # Length
            while idx < l:
                start = idx
                idx = idx + 1
                while idx < l and p[idx] == p[start]:
                    idx = idx + 1
                q = q + str(idx-start) + p[start]
            n, p = n - 1, q
            seq.append(int(p))
        return seq
    # Olivier Mengue (dolmen(AT)users.sourceforge.net), Jul 01 2005
    
  • Python
    def A005150(n):
        seq = [1] + [None] * (n - 1) # allocate entire array space
        def say(s):
            acc = '' # initialize accumulator
            while len(s) > 0:
                i = 0
                c = s[0] # char of first run
                while (i < len(s) and s[i] == c): # scan first digit run
                    i += 1
                acc += str(i) + c # append description of first run
                if i == len(s):
                    break # done
                else:
                    s = s[i:] # trim leading run of digits
            return acc
        for i in range(1, n):
            seq[i] = int(say(str(seq[i-1])))
        return seq
    # E. Johnson (ejohnso9(AT)earthlink.net), Mar 31 2008
    
  • Python
    # program without string operations
    def sign(n): return int(n > 0)
    def say(a):
        r = 0
        p = 0
        while a > 0:
            c = 3 - sign((a % 100) % 11) - sign((a % 1000) % 111)
            r += (10 * c + (a % 10)) * 10**(2*p)
            a //= 10**c
            p += 1
        return r
    a = 1
    for i in range(1, 26):
        print(i, a)
        a = say(a)
    # Volker Diels-Grabsch, Aug 18 2013
    
  • Python
    import re
    def lookandsay(limit, sequence = 1):
        if limit > 1:
            return lookandsay(limit-1, "".join([str(len(match.group()))+match.group()[0] for matchNum, match in enumerate(re.finditer(r"(\w)\1*", str(sequence)))]))
        else:
            return sequence
    # lookandsay(3) --> 21
    # Nicola Vanoni, Nov 29 2016
    
  • Python
    import itertools
    x = "1"
    for i in range(20):
        print(x)
        x = ''.join(str(len(list(g)))+k for k,g in itertools.groupby(x))
    # Matthew Cotton, Nov 12 2019
    

Formula

a(n+1) = A045918(a(n)). - Reinhard Zumkeller, Aug 09 2012
a(n) = Sum_{k=1..A005341(n)} A034002(n,k)*10^(A005341(n)-k). - Reinhard Zumkeller, Dec 15 2012
a(n) = A004086(A007651(n)). - Bernard Schott, Jan 08 2021
A055642(a(n+1)) = A005341(n+1) = 2*A043562(a(n)). - Ya-Ping Lu, Jan 28 2025
Conjecture: DC(a(n)) ~ k * (Conway's constant)^n where k is approximately 1.021... and DC denotes the number of digit changes in the decimal representation of n (e.g., DC(13112221)=4 because 1->3, 3-1, 1->2, 2->1). - Bill McEachen, May 09 2025
Conjecture: lim_{n->infinity} (c2+c3-c1)/(c1+c2+c3) = 0.01 approximately, where ci is the number of appearances of 'i' in a(n). - Ya-Ping Lu, Jun 05 2025

A007651 Describe the previous term! (method B - initial term is 1).

Original entry on oeis.org

1, 11, 12, 1121, 122111, 112213, 12221131, 1123123111, 12213111213113, 11221131132111311231, 12221231123121133112213111, 1123112131122131112112321222113113, 1221311221113112221131132112213121112312311231
Offset: 1

Views

Author

Keywords

Comments

Method B = 'digit'-indication followed by 'frequency'.

Examples

			The term after 1121 is obtained by saying "1 twice, 2 once, 1 once", which gives 122111.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007651 = foldl1 (\v d -> 10 * v + d) . map toInteger . a220424_row
    -- Reinhard Zumkeller, Dec 15 2012
    
  • Mathematica
    RunLengthEncode[ x_List ] := (Through[ {First, Length}[ #1 ] ] &) /@ Split[ x ]; LookAndSay[ n_, d_:1 ] := NestList[ Flatten[ Reverse /@ RunLengthEncode[ # ] ] &, {d}, n - 1 ]; F[ n_ ] := LookAndSay[ n, 1 ][ [ n ] ]; Table[ FromDigits[ Reverse[ F[ n ] ] ], {n, 1, 15} ]
    a[1] = 1; a[n_] := a[n] = FromDigits[Flatten[{First[#], Length[#]}&/@Split[IntegerDigits[a[n-1]]]]]; Map[a, Range[25]] (* Peter J. C. Moses, Mar 22 2013 *)
  • Python
    from itertools import accumulate, groupby, repeat
    def summarize(n, _): return int("".join(k+str(len(list(g))) for k, g in groupby(str(n))))
    def aupto(terms): return list(accumulate(repeat(1, terms), summarize))
    print(aupto(13)) # Michael S. Branicky, Sep 18 2022

Formula

a(n) = Sum_{k=1..A005341(n)} A220424(n,k)*10^(A005341(n)-k). - Reinhard Zumkeller, Dec 15 2012

A034002 A005150 expanded into single digits.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 3, 1, 2, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 1, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 3, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 2, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 2, 3, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 3, 2, 1, 1, 3, 2, 1, 2, 2, 2, 1
Offset: 1

Views

Author

Keywords

Examples

			Initial rows                             A005150
  1:  1                                           1
  2:  1,1                                        11
  3:  2,1                                        21
  4:  1,2,1,1                                  1211
  5:  1,1,1,2,2,1                            111221
  6:  3,1,2,2,1,1                            312211
  7:  1,3,1,1,2,2,2,1                      13112221
  8:  1,1,1,3,2,1,3,2,1,1                1113213211
  9:  3,1,1,3,1,2,1,1,1,3,1,2,2,1    31131211131221
		

Crossrefs

See the entry for A005150 for much more about this sequence.
Cf. A088203.
Cf. A005341 (row lengths), A220424 (method B version).

Programs

  • Haskell
    -- see Watkins link, p. 3.
    import Data.List (group)
    a034002 n k = a034002_tabf !! (n-1) !! (k-1)
    a034002_row n = a034002_tabf !! (n-1)
    a034002_tabf = iterate
                   (concat . map (\xs -> [length xs, head xs]) . group) [1]
    -- Reinhard Zumkeller, Aug 09 2012
    
  • Python
    from sympy import flatten
    l=[1]
    L=[1]
    n=s=1
    y=''
    while n<21:
        x=str(l[n - 1]) + ' '
        for i in range(len(x) - 1):
            if x[i]==x[i + 1]: s+=1
            else:
                y+=str(s)+str(x[i])
                s=1
        x=''
        n+=1
        l.append(int(y))
        L.append([int(a) for a in list(y)])
        y=''
        s=1
    print(l) # A005150
    print(flatten(L)) # Indranil Ghosh, Jul 05 2017

Formula

A005150(n) = Sum_{k=1..A005341(n)} T(n,k)*10^(A005341(n) - k). - Reinhard Zumkeller, Dec 15 2012

Extensions

Offset changed and keyword tabf added by Reinhard Zumkeller, Aug 09 2012

A004977 Sum of digits of n-th term in Look and Say sequence A005150.

Original entry on oeis.org

1, 2, 3, 5, 8, 10, 13, 16, 23, 32, 44, 56, 76, 102, 132, 174, 227, 296, 383, 505, 679, 892, 1151, 1516, 1988, 2602, 3400, 4410, 5759, 7519, 9809, 12810, 16710, 21758, 28356, 36955, 48189, 62805, 81803, 106647, 139088, 181301, 236453, 308150, 401689
Offset: 1

Views

Author

Keywords

Comments

It appears that the ratio of consecutive terms approaches Conway's constant 1.303.. (A014715). The terms divided by the numbers of added digits also would tend to a constant, i.e. A004977(n)/A005341(n)->const. If the digits in A005150 occur with constant probabilities c1, c2, c3 then A004977(n)=A005341(n)*(c1+2*c2+3*c3) and this conjecture entails the convergences noted here. - Alexandre Losev, Aug 31 2005

Crossrefs

Programs

  • Mathematica
    RunLengthEncode[ x_List ] := (Through[ {First, Length}[ #1 ] ] &) /@ Split[ x ]; LookAndSay[ n_, d_:1 ] := NestList[ Flatten[ Reverse /@ RunLengthEncode[ # ] ] &, {d}, n - 1 ]; F[ n_ ] := LookAndSay[ n, 1 ][ [ n ] ]; Table[ Apply[ Plus, F[ n ] ], {n, 1, 51} ]
    p={-4,8,-7,-10,15,18,11,-65,-4,27,7,9,-62,47,56,-32,-46,-8,67,44,-16,24,2,-59,-20,-65,84,122,-51,-38,-131,10,91,24,39,-89,-42,39,12,45,-40,-63,39,40,10,-19,-58,47,51,-7,-43,-67,32,41,20,-13,-24,-3,8,0,0,0,0,10,5,-3,-11,-6,5,7,3,-2,-1,-1,-1,-1,0,1,1}; q={6,-9,9,-18,16,-11,14,-8,1,-5,7,2,8,-14,-5,-5,19,3,-6,-7,-6,16,-7,8,-22,17,-12,7,5,7,-8,4,-7,-9,13,-4,-6,14,-14,19,-7,-13,2,-4,18,0,-1,-4,-12,8,-5,0,8,1,7,-8,-5,-2,3,3,0,0,0,0,-2,-1,0,3,1,-1,-1,-1,1}; gf=Fold[x #1+#2&,0,p]/Fold[x #1+#2&,0,q]; CoefficientList[Series[gf,{x,0,99}],x] (* Peter J. C. Moses, Jun 24 2013 *)

A220424 Triangle read by rows: A007651 expanded into single digits.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 3, 1, 2, 2, 2, 1, 1, 3, 1, 1, 1, 2, 3, 1, 2, 3, 1, 1, 1, 1, 2, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 3, 1, 1, 2, 2, 1, 1, 3, 1, 1, 3, 2, 1, 1, 1, 3, 1, 1, 2, 3, 1, 1, 2, 2, 2, 1, 2, 3, 1, 1, 2, 3, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 15 2012

Keywords

Comments

A007651(n) = sum{T(n,k)*10^(A005341(n)-k): k=1..A005341(n)}.

Examples

			.  Initial rows                          A007651
.  1:  1                                           1
.  2:  1,1                                        11
.  3:  1,2                                        12
.  4:  1,1,2,1                                  1121
.  5:  1,2,2,1,1,1                            122111
.  6:  1,1,2,2,1,3                            112213
.  7:  1,2,2,2,1,1,3,1                      12221131
.  8:  1,1,2,3,1,2,3,1,1,1                1123123111
.  9:  1,2,2,1,3,1,1,1,2,1,3,1,1,3    12213111213113 .
		

Crossrefs

Cf. A005341 (row lengths), A034002 (method A version).

Programs

  • Haskell
    import Data.List (group)
    a220424 n k = a220424_tabf !! (n-1) !! (k-1)
    a220424_row n = a220424_tabf !! (n-1)
    a220424_tabf = iterate
                   (concatMap (\xs -> [head xs, length xs]) . group) [1]

A121993 Numbers k that yield a smaller number a(k) under the "Look and Say" function A045918.

Original entry on oeis.org

33, 44, 55, 66, 77, 88, 99, 111, 222, 333, 444, 555, 666, 777, 888, 999, 1111, 1222, 1333, 1444, 1555, 1666, 1777, 1888, 1999, 2000, 2111, 2222, 2233, 2244, 2255, 2266, 2277, 2288, 2299, 2333, 2444, 2555, 2666, 2777, 2888, 2999, 3000, 3111, 3222, 3300, 3311
Offset: 1

Views

Author

Sergio Pimentel, Sep 11 2006

Keywords

Examples

			a(26)=2000 because under the Look and Say operator, 2000 is described as one two three zeros or: 1230, which is smaller than 2000.
		

Crossrefs

Programs

  • Haskell
    a121993 n = a121993_list !! (n-1)
    a121993_list = filter (\x -> a045918 x < x) [0..]
    -- Reinhard Zumkeller, Jan 25 2014
    
  • Python
    from itertools import groupby
    def ok(n): return n > int(''.join(str(len(list(g)))+k for k, g in groupby(str(n))))
    print([k for k in range(3312) if ok(k)]) # Michael S. Branicky, May 26 2023

A179999 Length of the n-th term in the modified Look and Say sequence A110393.

Original entry on oeis.org

1, 2, 2, 4, 6, 8, 10, 14, 18, 24, 30, 40, 50, 66, 82, 108, 134, 176, 218, 286, 354, 464, 574, 752, 930, 1218, 1506, 1972, 2438, 3192, 3946, 5166, 6386, 8360, 10334, 13528, 16722, 21890, 27058, 35420, 43782, 57312, 70842, 92734, 114626, 150048
Offset: 1

Views

Author

Nathaniel Johnston, Jan 13 2011

Keywords

Comments

The average multiplicative growth from the n-th term to the (n+1)-st term is sqrt(phi) = 1.272..., where phi = (1+sqrt(5))/2 is the golden ratio, see A139339.

Examples

			The 6th term in A110393 is 21112211, so a(6) = 8.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[((1+x) (-1-x+x^2) (1-x+x^2))/((1-x) (-1+x^2+x^4)),{x,0,99}],x] (* Peter J. C. Moses, Jun 23 2013 *)
  • PARI
    Vec(x*(1 + x)*(1 + x - x^2)*(1 - x + x^2) / ((1 - x)*(1 - x^2 - x^4)) + O(x^50)) \\ Colin Barker, Aug 10 2019

Formula

a(n) = length(A110393(n)).
From Colin Barker, Aug 10 2019: (Start)
G.f.: x*(1 + x)*(1 + x - x^2)*(1 - x + x^2) / ((1 - x)*(1 - x^2 - x^4)).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) for n>6. (End)
From A.H.M. Smeets, Aug 10 2019 (Start)
Limit_{n->oo} a(n+1)/a(n) = (1+phi)/2 = (3+sqrt(5))/4 = A239798 for odd n.
Limit_{n->oo} a(n+1)/a(n) = 2/phi = 4/(1+sqrt(5)) = A134972 for even n.
Limit_{n->oo} a(n+2)/a(n) = (1+phi)/phi = phi = A001622. (End)
For odd n > 1, a(n) = 4*Fibonacci((n + 1)/2) - 2. For even n, a(n) = 2*Fibonacci(n/2 + 2) - 2. - Ehren Metcalfe, Aug 10 2019

A121994 Smallest natural number that yields a sequence of n decreasing numbers under the "Look and Say" operator A045918.

Original entry on oeis.org

1, 33, 333, 333111, 33333333333333333333333333333333311111111111
Offset: 0

Views

Author

Sergio Pimentel, Sep 11 2006

Keywords

Comments

a(5) <= 33333333333333333333333333333333 '3's concatenated with 1111111111 '1's. - Tyler Busby, Feb 07 2023

Examples

			a(3)=333111 because under the Look and Say operator sequence A045918 it yields: 3331, 3311, 2321 which are all decreasing (3 in a row). The next term would be 12131211 which is greater than 2321.
		

Crossrefs

Extensions

a(4) from Sergio Pimentel, Mar 05 2008
a(4) corrected by Tyler Busby, Feb 07 2023
Showing 1-9 of 9 results.