cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 151 results. Next

A005341 Length of n-th term in Look and Say sequences A005150 and A007651.

Original entry on oeis.org

1, 2, 2, 4, 6, 6, 8, 10, 14, 20, 26, 34, 46, 62, 78, 102, 134, 176, 226, 302, 408, 528, 678, 904, 1182, 1540, 2012, 2606, 3410, 4462, 5808, 7586, 9898, 12884, 16774, 21890, 28528, 37158, 48410, 63138, 82350, 107312, 139984, 182376, 237746, 310036, 403966, 526646, 686646
Offset: 1

Views

Author

Keywords

Comments

Row lengths of A034002 and of A220424. - Reinhard Zumkeller, Dec 15 2012
Satisfies a recurrence of order 72. The characteristic polynomial of this recurrence is a degree-72 polynomial that factors as (x-1)*q(x), where q(x) is a degree-71 polynomial. The unique positive real root of q is approximately 1.3036 and is called Conway's constant (A014715), which equals the limiting ratio a(n+1)/a(n). - Nathaniel Johnston, Apr 12 2018 [Corrected by Richard Stanley, Dec 26 2018]

References

  • J. H. Conway, The weird and wonderful chemistry of audioactive decay, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Communications, Springer, NY 1987, pp. 173-188.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 452-455.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Haskell
    a005341 = length . a034002_row  -- Reinhard Zumkeller, Dec 15 2012
  • Mathematica
    RunLengthEncode[ x_List ] := (Through[ {First, Length}[ #1 ] ] &) /@ Split[ x ]; LookAndSay[ n_, d_:1 ] := NestList[ Flatten[ Reverse /@ RunLengthEncode[ # ] ] &, {d}, n - 1 ]; F[ n_ ] := LookAndSay[ n, 1 ][ [ n ] ]; Table[ Length[ F[ n ] ], {n, 1, 51} ]
    p = {12, -18, 18, -18, 18, -20, -22, 31, 15, -4, -4, -19, 62, -50, -21, -11, 41, 54, -56, -44, 15, -27, -15, 45, -8, 89, -64, -66, -25, 38, 126, -39, -32, -33, -65, 107, 14, 16, -13, -79, 7, 42, 12, 8, -26, -9, 35, -23, -20, -30, 34, 58, -1, -20, -36, -6, 13, 8, 6, 3, -1, -4, -1, -4, -5, -1, 8, 6, 0, -6, -4, 1, 0, 1, 1, 1, 1, -1, -1}; q = {-6, 9, -9, 18, -16, 11, -14, 8, -1, 5, -7, -2, -8, 14, 5, 5, -19, -3, 6, 7, 6, -16, 7, -8, 22, -17, 12, -7, -5, -7, 8, -4, 7, 9, -13, 4, 6, -14, 14, -19, 7, 13, -2, 4, -18, 0, 1, 4, 12, -8, 5, 0, -8, -1, -7, 8, 5, 2, -3, -3, 0, 0, 0, 0, 2, 1, 0, -3, -1, 1, 1, 1, -1}; gf = Fold[x #1 + #2 &, 0, p]/Fold[x #1 + #2 &, 0, q]; CoefficientList[Series[gf, {x, 0, 99}], x] (* Peter J. C. Moses, Jun 23 2013 *)
  • PARI
    print1(a=1);for(i=2,100,print1(",",#Str(a=A005150(2,a))))  \\ M. F. Hasler, Nov 08 2011
    

Formula

a(n) = A055642(A005150(n)) = A055642(A007651(n)). - Reinhard Zumkeller, Dec 15 2012

Extensions

More terms from Mike Keith

A034002 A005150 expanded into single digits.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 3, 1, 2, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 1, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 3, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 2, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 2, 3, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 3, 2, 1, 1, 3, 2, 1, 2, 2, 2, 1
Offset: 1

Views

Author

Keywords

Examples

			Initial rows                             A005150
  1:  1                                           1
  2:  1,1                                        11
  3:  2,1                                        21
  4:  1,2,1,1                                  1211
  5:  1,1,1,2,2,1                            111221
  6:  3,1,2,2,1,1                            312211
  7:  1,3,1,1,2,2,2,1                      13112221
  8:  1,1,1,3,2,1,3,2,1,1                1113213211
  9:  3,1,1,3,1,2,1,1,1,3,1,2,2,1    31131211131221
		

Crossrefs

See the entry for A005150 for much more about this sequence.
Cf. A088203.
Cf. A005341 (row lengths), A220424 (method B version).

Programs

  • Haskell
    -- see Watkins link, p. 3.
    import Data.List (group)
    a034002 n k = a034002_tabf !! (n-1) !! (k-1)
    a034002_row n = a034002_tabf !! (n-1)
    a034002_tabf = iterate
                   (concat . map (\xs -> [length xs, head xs]) . group) [1]
    -- Reinhard Zumkeller, Aug 09 2012
    
  • Python
    from sympy import flatten
    l=[1]
    L=[1]
    n=s=1
    y=''
    while n<21:
        x=str(l[n - 1]) + ' '
        for i in range(len(x) - 1):
            if x[i]==x[i + 1]: s+=1
            else:
                y+=str(s)+str(x[i])
                s=1
        x=''
        n+=1
        l.append(int(y))
        L.append([int(a) for a in list(y)])
        y=''
        s=1
    print(l) # A005150
    print(flatten(L)) # Indranil Ghosh, Jul 05 2017

Formula

A005150(n) = Sum_{k=1..A005341(n)} T(n,k)*10^(A005341(n) - k). - Reinhard Zumkeller, Dec 15 2012

Extensions

Offset changed and keyword tabf added by Reinhard Zumkeller, Aug 09 2012

A079562 Number of distinct prime factors of n-th term of Look and Say Sequence A005150.

Original entry on oeis.org

0, 1, 2, 2, 2, 1, 1, 4, 2, 2, 4, 3, 3, 5, 7, 7, 7, 5
Offset: 1

Views

Author

Joseph L. Pe, Jan 25 2003

Keywords

Comments

a(16) >= 5. - Nathaniel Johnston, Nov 02 2010
a(18) >= 5. - Giovanni Resta, May 20 2020

Crossrefs

Programs

  • Mathematica
    s[1]=1; s[n_] := s[n] = FromDigits[ Flatten[{ IntegerDigits@ Length@ #, First@ #} & /@ Split[ IntegerDigits@ s[n-1] ]]]; PrimeNu /@ s /@ Range[15] (* Giovanni Resta, May 20 2020 *)

Formula

a(n) = A001221(A005150(n)). - Michel Marcus, Apr 09 2022

Extensions

a(11)-a(15) from Nathaniel Johnston, Nov 02 2010
a(16)-a(17) from Giovanni Resta, May 20 2020
a(18) from Andy Huchala, Apr 08 2022

A004977 Sum of digits of n-th term in Look and Say sequence A005150.

Original entry on oeis.org

1, 2, 3, 5, 8, 10, 13, 16, 23, 32, 44, 56, 76, 102, 132, 174, 227, 296, 383, 505, 679, 892, 1151, 1516, 1988, 2602, 3400, 4410, 5759, 7519, 9809, 12810, 16710, 21758, 28356, 36955, 48189, 62805, 81803, 106647, 139088, 181301, 236453, 308150, 401689
Offset: 1

Views

Author

Keywords

Comments

It appears that the ratio of consecutive terms approaches Conway's constant 1.303.. (A014715). The terms divided by the numbers of added digits also would tend to a constant, i.e. A004977(n)/A005341(n)->const. If the digits in A005150 occur with constant probabilities c1, c2, c3 then A004977(n)=A005341(n)*(c1+2*c2+3*c3) and this conjecture entails the convergences noted here. - Alexandre Losev, Aug 31 2005

Crossrefs

Programs

  • Mathematica
    RunLengthEncode[ x_List ] := (Through[ {First, Length}[ #1 ] ] &) /@ Split[ x ]; LookAndSay[ n_, d_:1 ] := NestList[ Flatten[ Reverse /@ RunLengthEncode[ # ] ] &, {d}, n - 1 ]; F[ n_ ] := LookAndSay[ n, 1 ][ [ n ] ]; Table[ Apply[ Plus, F[ n ] ], {n, 1, 51} ]
    p={-4,8,-7,-10,15,18,11,-65,-4,27,7,9,-62,47,56,-32,-46,-8,67,44,-16,24,2,-59,-20,-65,84,122,-51,-38,-131,10,91,24,39,-89,-42,39,12,45,-40,-63,39,40,10,-19,-58,47,51,-7,-43,-67,32,41,20,-13,-24,-3,8,0,0,0,0,10,5,-3,-11,-6,5,7,3,-2,-1,-1,-1,-1,0,1,1}; q={6,-9,9,-18,16,-11,14,-8,1,-5,7,2,8,-14,-5,-5,19,3,-6,-7,-6,16,-7,8,-22,17,-12,7,5,7,-8,4,-7,-9,13,-4,-6,14,-14,19,-7,-13,2,-4,18,0,-1,-4,-12,8,-5,0,8,1,7,-8,-5,-2,3,3,0,0,0,0,-2,-1,0,3,1,-1,-1,-1,1}; gf=Fold[x #1+#2&,0,p]/Fold[x #1+#2&,0,q]; CoefficientList[Series[gf,{x,0,99}],x] (* Peter J. C. Moses, Jun 24 2013 *)

A087282 An infinite audioactive word, one of three in the cycle that results from the limit of the 'Look and Say' sequence using method A with an initial term of 1 (A005150).

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 2, 1, 1, 1, 3, 2, 2, 2, 1, 2, 3, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 2, 1, 1, 2, 3, 1, 1, 3, 2, 1, 3, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 2, 1, 2, 3, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 2, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 2, 1, 3, 2, 1, 1, 3, 2
Offset: 1

Views

Author

Paul D. Hanna, Aug 28 2003

Keywords

Comments

Performing 'Look and Say' once generates A087283, twice results in A087284, while three operations yield the original infinite word.

Crossrefs

A119566 Periodic table of elements associated with the Look-and-Say sequence A005150.

Original entry on oeis.org

22, 13112221133211322112211213322112, 312211322212221121123222112, 111312211312113221133211322112211213322112, 1321132122211322212221121123222112, 3113112211322112211213322112
Offset: 1

Views

Author

N. J. A. Sloane, May 31 2006

Keywords

Comments

See A005150 for further comments, links and references.

References

  • J. H. Conway, The weird and wonderful chemistry of audioactive decay, Eureka 46 (1986) 5-16.
  • J. H. Conway, The weird and wonderful chemistry of audioactive decay, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 173-188.

Crossrefs

Cf. A005150, A213979 (in lexicographic order), A215403 (transuranic isotopes).

A334132 Smallest prime factor of n-th term in Look and Say sequence A005150, with a(1)=1.

Original entry on oeis.org

1, 11, 3, 7, 11, 312211, 13112221, 11, 5581, 26966089, 7, 20328937, 29, 3, 3, 3, 1637, 103, 50593, 43, 13, 19, 17, 103, 31, 19, 7, 3, 19, 1208033, 23, 3, 3, 83, 3, 233, 3, 3
Offset: 1

Views

Author

Bernard Schott, Apr 15 2020

Keywords

Comments

The terms in A005150 that are known to be primes are a(2) = 11, a(6) = 312211 and a(7) = 13112221 (A100108).
a(n) = 3 iff A004977(n) is positive and divisible by 3.
a(39) > 2*10^9. a(62) > 10^7. - Tyler Busby, Jan 25 2023

Examples

			A005150(7) = 13112221 is prime and a(7) = 13112221.
A005150(9) = 31131211131221 = 5581 * 5578070441, hence a(9) = 5581.
		

Crossrefs

Cf. A004977 (sum of digits of terms of A005150), A005150 (Look and Say sequence), A020639, A079562, A100108 (primes in A005150).

Formula

a(n) = A020639(A005150(n)).

Extensions

a(17)-a(38) from Jinyuan Wang, Apr 15 2020

A037033 Earliest sequence of 6 primes according to the rules stipulated in A005150.

Original entry on oeis.org

233, 1223, 112213, 21221113, 1211223113, 11122122132113
Offset: 0

Views

Author

Keywords

Crossrefs

Extensions

Name edited by Michel Marcus, May 09 2020

A038131 Second earliest sequence of 6 primes according to the rules stipulated in A005150.

Original entry on oeis.org

120777781, 111210471811, 311211101417111821, 13211231101114111731181211, 111312211213211031143117132118111221, 31131122211211131221101321141321171113122118312211
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

Name edited by Michel Marcus, May 09 2020

A038132 Third earliest sequence of 6 primes according to the rules stipulated in A005150.

Original entry on oeis.org

402266411, 141022261421, 11141110321611141211, 31143110131211163114111221, 132114132110111311123116132114312211, 1113122114111312211031133112132116111312211413112221
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

Name edited by Michel Marcus, May 09 2020
Showing 1-10 of 151 results. Next