A005493 2-Bell numbers: a(n) = number of partitions of [n+1] with a distinguished block.
1, 3, 10, 37, 151, 674, 3263, 17007, 94828, 562595, 3535027, 23430840, 163254885, 1192059223, 9097183602, 72384727657, 599211936355, 5150665398898, 45891416030315, 423145657921379, 4031845922290572, 39645290116637023, 401806863439720943, 4192631462935194064
Offset: 0
Examples
For example, a(1) counts (12), (1)-2, 1-(2) where dashes separate blocks and the distinguished block is parenthesized.
References
- Olivier Gérard and Karol A. Penson, A budget of set partition statistics, in preparation. Unpublished as of 2017.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..574 (first 101 terms from T. D. Noe)
- V. E. Adler, Set partitions and integrable hierarchies, arXiv:1510.02900 [nlin.SI], 2015.
- M. Brookes, J. East, C. Miller, J.D. Mitchell, and N. Ruskuc, Heights of one- and two-sided congruence lattices of semigroups, arXiv:2310.08229 [math.GR], 2023.
- Giulio Cerbai, Modified ascent sequences and Bell numbers, arXiv:2305.10820 [math.CO], 2023. See p. 11.
- Martin Cohn, Shimon Even, Karl Menger, Jr., and Philip K. Hooper, On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly 69 (1962), no. 8, 782--785. MR1531841.
- Martin Cohn, Shimon Even, Karl Menger, Jr., and Philip K. Hooper, On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly 69 (1962), no. 8, 782--785. MR1531841. [Annotated scanned copy]
- R. B. Corcino and C. B. Corcino, On generalized Bell polynomials, Discrete Dyn. Nat. Soc. Article ID: 623456 (2011).
- C. B. Corcino and R. B. Corcino, An asymptotic formula for r-Bell numbers with real arguments, ISRN Discrete Math, 2013 (2013), Article ID 274697.
- Gábor Czédli, Lattices with lots of congruence energy, arXiv:2205.02294 [math.RA], 2022.
- A. Dil and V. Kurt, Polynomials related to harmonic numbers and evaluation of harmonic number series II, Appl. Anal. Discrete Math. 5 (2011), 212-229.
- Eldar Fischer, Johann A. Makowsky, and Vsevolod Rakita, MC-finiteness of restricted set partition functions, arXiv:2302.08265 [math.CO], 2023.
- A. L. L. Gao, S. Kitaev, and P. B. Zhang, On pattern avoiding indecomposable permutations, arXiv:1605.05490 [math.CO], 2016.
- S. Getu et al., How to guess a generating function, SIAM J. Discrete Math., 5 (1992), 497-499.
- S. K. Ghosal and J. K. Mandal, Stirling Transform Based Color Image Authentication, Procedia Technology, 2013 Volume 10, 2013, Pages 95-104.
- Alain Hertz, Hadrien Mélot, Sébastien Bonte, Gauvain Devillez, and Pierre Hauweele, Upper bounds on the average number of colors in the non-equivalent colorings of a graph, arXiv:2105.01120 [math.CO], 2021.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 152
- R. Jakimczuk, Successive Derivatives and Integer Sequences, J. Int. Seq. 14 (2011) # 11.7.3.
- S. Kitaev, Generalized pattern avoidance with additional restrictions, Sem. Lothar. Combinat. B48e (2003).
- S. Kitaev and T. Mansour, Simultaneous avoidance of generalized patterns, arXiv:math/0205182 [math.CO], 2002.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Philippe Leroux, L-algebras, triplicial-algebras, within an equivalence of categories motivated by graphs (formerly "An equivalence of categories motivated by weighted directed graphs"), arXiv:0709.3453 [math-ph], 2007-2008.
- Toufik Mansour and Mark Shattuck, A recurrence related to the Bell numbers, INTEGERS 11 (2011), #A67.
- I. Mezo, The r-Bell numbers, J. Integer Seq. 14(1) (2011), Article 11.1.1.
- I. Mezo, Periodicity of the last digits of some combinatorial sequences, arXiv preprint arXiv:1308.1637 [math.CO], 2013.
- A. M. Odlyzko, Asymptotic enumeration methods, pp. 1063-1229 of R. L. Graham et al., eds., Handbook of Combinatorics, 1995; see Example 12.16 (pdf, ps)
- Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
- J. Riordan, Letter, Oct 31 1977
- Eric Weisstein's World of Mathematics, Stirling Transform.
- Eric Weisstein's World of Mathematics, Bell Triangle
- E. G. Whitehead, Jr., Stirling number identities from chromatic polynomials, J. Combin. Theory, A 24 (1978), 314-317.
- David W. K. Yeung, Recursive sequence identifying the number of embedded coalitions, International Game Theory Review 10 (1) (2008), 129-136.
Crossrefs
Programs
-
Maple
with(combinat): seq(bell(n+2)-bell(n+1),n=0..22); # Emeric Deutsch, Nov 13 2006 seq(add(binomial(n, k)*(bell(n-k)), k=1..n), n=1..23); # Zerinvary Lajos, Dec 01 2006 A005493 := proc(n) local a,b,i; a := [seq(3,i=1..n)]; b := [seq(2,i=1..n)]; 2^n*exp(-x)*hypergeom(a,b,x); round(evalf(subs(x=1,%),66)) end: seq(A005493(n),n=0..22); # Peter Luschny, Mar 30 2011 BT := proc(n,k) option remember; if n = 0 and k = 0 then 1 elif k = n then BT(n-1,0) else BT(n,k+1)+BT(n-1,k) fi end: A005493 := n -> add(BT(n,k),k=0..n): seq(A005493(i),i=0..22); # Peter Luschny, Aug 04 2011 # For Maple code for r-Bell numbers, etc., see A232472. - N. J. A. Sloane, Nov 27 2013
-
Mathematica
a=Exp[x]-1; Rest[CoefficientList[Series[a Exp[a],{x,0,20}],x] * Table[n!,{n,0,20}]] a[ n_] := If[ n<0, 0, With[ {m = n+1}, m! SeriesCoefficient[ # Exp@# &[ Exp@x - 1], {x, 0, m}]]]; (* Michael Somos, Nov 16 2011 *) Differences[BellB[Range[30]]] (* Harvey P. Dale, Oct 16 2014 *)
-
PARI
{a(n) = if( n<0, 0, n! * polcoeff( exp( exp( x + x * O(x^n)) + 2*x - 1), n))}; /* Michael Somos, Oct 09 2002 */
-
PARI
{a(n) = if( n<0, 0, n+=2; subst( polinterpolate( Vec( serlaplace( exp( exp( x + O(x^n)) - 1) - 1))), x, n))}; /* Michael Somos, Oct 07 2003 */
-
Python
# requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs. from itertools import accumulate A005493_list, blist, b = [], [1], 1 for _ in range(1001): blist = list(accumulate([b]+blist)) b = blist[-1] A005493_list.append(blist[-2]) # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014
Formula
a(n-1) = Sum_{k=1..n} k*Stirling2(n, k) for n>=1.
E.g.f.: exp(exp(x) + 2*x - 1). First differences of Bell numbers (if offset 1). - Michael Somos, Oct 09 2002
G.f.: Sum_{k>=0} (x^k/Product_{l=1..k} (1-(l+1)x)). - Ralf Stephan, Apr 18 2004
a(n) = Sum_{i=0..n} 2^(n-i)*B(i)*binomial(n,i) where B(n) = Bell numbers A000110(n). - Fred Lunnon, Aug 04 2007 [Written umbrally, a(n) = (B+2)^n. - N. J. A. Sloane, Feb 07 2009]
Representation as an infinite series: a(n-1) = Sum_{k>=2} (k^n*(k-1)/k!)/exp(1), n=1, 2, ... This is a Dobinski-type summation formula. - Karol A. Penson, Mar 14 2002
Row sums of A011971 (Aitken's array, also called Bell triangle). - Philippe Deléham, Nov 15 2003
a(n) = exp(-1)*Sum_{k>=0} ((k+2)^n)/k!. - Gerald McGarvey, Jun 03 2004
Recurrence: a(n+1) = 1 + Sum_{j=1..n} (1+binomial(n, j))*a(j). - Jon Perry, Apr 25 2005
a(n) = B(n+2) - B(n+1), where B(n) are Bell numbers (A000110). - Franklin T. Adams-Watters, Jul 13 2006
a(n) = A123158(n,2). - Philippe Deléham, Oct 06 2006
Binomial transform of Bell numbers 1, 2, 5, 15, 52, 203, 877, 4140, ... (see A000110).
Define f_1(x), f_2(x), ... such that f_1(x)=x*e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n=2,3,.... Then a(n-1) = e^(-1)*f_n(1). - Milan Janjic, May 30 2008
Representation of numbers a(n), n=0,1..., as special values of hypergeometric function of type (n)F(n), in Maple notation: a(n)=exp(-1)*2^n*hypergeom([3,3...3],[2.2...2],1), n=0,1..., i.e., having n parameters all equal to 3 in the numerator, having n parameters all equal to 2 in the denominator and the value of the argument equal to 1. Examples: a(0)= 2^0*evalf(hypergeom([],[],1)/exp(1))=1 a(1)= 2^1*evalf(hypergeom([3],[2],1)/exp(1))=3 a(2)= 2^2*evalf(hypergeom([3,3],[2,2],1)/exp(1))=10 a(3)= 2^3*evalf(hypergeom([3,3,3],[2,2,2],1)/exp(1))=37 a(4)= 2^4*evalf(hypergeom([3,3,3,3],[2,2,2,2],1)/exp(1))=151 a(5)= 2^5*evalf(hypergeom([3,3,3,3,3],[2,2,2,2,2],1)/exp(1)) = 674. - Karol A. Penson, Sep 28 2007
Let A be the upper Hessenberg matrix of order n defined by: A[i,i-1]=-1, A[i,j]=binomial(j-1,i-1), (i <= j), and A[i,j]=0 otherwise. Then, for n >= 1, a(n) = (-1)^(n)charpoly(A,-2). - Milan Janjic, Jul 08 2010
a(n) = D^(n+1)(x*exp(x)) evaluated at x = 0, where D is the operator (1+x)*d/dx. Cf. A003128, A052852 and A009737. - Peter Bala, Nov 25 2011
From Sergei N. Gladkovskii, Oct 11 2012 to Jan 26 2014: (Start)
Continued fractions:
G.f.: 1/U(0) where U(k) = 1 - x*(k+3) - x^2*(k+1)/U(k+1).
G.f.: 1/(U(0)-x) where U(k) = 1 - x - x*(k+1)/(1 - x/U(k+1)).
G.f.: G(0)/(1-x) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k+2*x-1) - x*(2*k+1)*(2*k+3)*(2*x*k+2*x-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+3*x-1)/G(k+1) )).
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-2*x-k*x)/(1-x/(x-1/G(k+1) )).
G.f.: -G(0)/x where G(k) = 1 - 1/(1-k*x-x)/(1-x/(x-1/G(k+1) )).
G.f.: 1 - 2/x + (1/x-1)*S where S = sum(k>=0, ( 1 + (1-x)/(1-x-x*k) )*(x/(1-x))^k / prod(i=0..k-1, (1-x-x*i)/(1-x) ) ).
G.f.: (1-x)/x/(G(0)-x) - 1/x where G(k) = 1 - x*(k+1)/(1 - x/G(k+1) ).
G.f.: (1/G(0) - 1)/x^3 where G(k) = 1 - x/(x - 1/(1 + 1/(x*k-1)/G(k+1) )).
G.f.: 1/Q(0), where Q(k)= 1 - 2*x - x/(1 - x*(k+1)/Q(k+1)).
G.f.: G(0)/(1-3*x), where G(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (1 - x*(k+3))*(1 - x*(k+4))/G(k+1) ). (End)
a(n) ~ exp(n/LambertW(n) + 3*LambertW(n)/2 - n - 1) * n^(n + 1/2) / LambertW(n)^(n+1). - Vaclav Kotesovec, Jun 09 2020
a(0) = 1; a(n) = 2 * a(n-1) + Sum_{k=0..n-1} binomial(n-1,k) * a(k). - Ilya Gutkovskiy, Jul 02 2020
a(n) ~ n^2 * Bell(n) / LambertW(n)^2 * (1 - LambertW(n)/n). - Vaclav Kotesovec, Jul 28 2021
a(n) = Sum_{k=0..n} 3^k*A124323(n, k). - Mélika Tebni, Jun 02 2022
Extensions
Definition revised by David Callan, Oct 11 2005
Comments