A005651 Sum of multinomial coefficients (n_1+n_2+...)!/(n_1!*n_2!*...) where (n_1, n_2, ...) runs over all integer partitions of n.
1, 1, 3, 10, 47, 246, 1602, 11481, 95503, 871030, 8879558, 98329551, 1191578522, 15543026747, 218668538441, 3285749117475, 52700813279423, 896697825211142, 16160442591627990, 307183340680888755, 6147451460222703502, 129125045333789172825, 2841626597871149750951
Offset: 0
Examples
For n=3, say the first three cans in the row contain red, white, and blue paint respectively. The objects can be painted r,r,r or r,r,w or r,w,b and then linearly ordered in 1 + 3 + 6 = 10 ways. - _Geoffrey Critzer_, Jun 08 2009 From _Gus Wiseman_, Sep 03 2018: (Start) The a(3) = 10 ordered set partitions with weakly decreasing block sizes: {{1},{2},{3}} {{1},{3},{2}} {{2},{1},{3}} {{2},{3},{1}} {{3},{1},{2}} {{3},{2},{1}} {{2,3},{1}} {{1,2},{3}} {{1,3},{2}} {{1,2,3}} (End)
References
- Abramowitz and Stegun, Handbook, p. 831, column labeled "M_1".
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 126.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450 (first 101 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. E. Hoffman, Updown categories: Generating functions and universal covers, arXiv preprint arXiv:1207.1705 [math.CO], 2012.
- A. Knopfmacher, A. M. Odlyzko, B. Pittel, L. B. Richmond, D. Stark, G. Szekeres, and N. C. Wormald, The Asymptotic Number of Set Partitions with Unequal Block Sizes, The Electronic Journal of Combinatorics, 6 (1999), R2.
- S. Schreiber & N. J. A. Sloane, Correspondence, 1980.
Crossrefs
Programs
-
Maple
A005651b := proc(k) add( d/(d!)^(k/d),d=numtheory[divisors](k)) ; end proc: A005651 := proc(n) option remember; local k ; if n <= 1 then 1; else (n-1)!*add(A005651b(k)*procname(n-k)/(n-k)!, k=1..n) ; end if; end proc: seq(A005651(k), k=0..10) ; # R. J. Mathar, Jan 03 2011 # second Maple program: b:= proc(n, i) option remember; `if`(n=0 or i=1, n!, b(n, i-1) +binomial(n, i)*b(n-i, min(n-i, i))) end: a:= n-> b(n$2): seq(a(n), n=0..25); # Alois P. Heinz, Aug 29 2015, Dec 12 2016
-
Mathematica
Table[Total[n!/Map[Function[n, Apply[Times, n! ]], IntegerPartitions[n]]], {n, 0, 20}] (* Geoffrey Critzer, Jun 08 2009 *) Table[Total[Apply[Multinomial, IntegerPartitions[n], {1}]], {n, 0, 20}] (* Jean-François Alcover and Olivier Gérard, Sep 11 2014 *) b[n_, i_, t_] := b[n, i, t] = If[t==1, 1/n!, Sum[b[n-j, j, t-1]/j!, {j, i, n/t}]]; a[n_] := If[n==0, 1, n!*b[n, 0, n]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 20 2015, after Alois P. Heinz *)
-
Maxima
a(m,n):=if n=m then 1 else sum(binomial(n,k)*a(k,n-k),k,m,(n/2))+1; makelist(a(1,n),n,0,17); /* Vladimir Kruchinin, Sep 06 2014 */
-
PARI
a(n)=my(N=n!,s);forpart(x=n,s+=N/prod(i=1,#x,x[i]!));s \\ Charles R Greathouse IV, May 01 2015
-
PARI
{ my(n=25); Vec(serlaplace(prod(k=1, n, 1/(1-x^k/k!) + O(x*x^n)))) } \\ Andrew Howroyd, Dec 20 2017
Formula
E.g.f.: 1 / Product (1 - x^k/k!).
a(n) = Sum_{k=1..n} (n-1)!/(n-k)!*b(k)*a(n-k), where b(k) = Sum_{d divides k} d*d!^(-k/d). - Vladeta Jovovic, Oct 14 2002
a(n) ~ c * n!, where c = Product_{k>=2} 1/(1-1/k!) = A247551 = 2.52947747207915264... . - Vaclav Kotesovec, May 09 2014
a(n) = S(n,1), where S(n,m) = sum(k=m..n/2 , binomial(n,k)*S(n-k,k))+1, S(n,n)=1, S(n,m)=0 for nVladimir Kruchinin, Sep 06 2014
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*(j!)^k)). - Ilya Gutkovskiy, Jun 18 2018
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003
Comments