A028489 Duplicate of A005808.
17, 19, 79, 139, 907, 1907, 2029, 4801, 5153, 10867
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(7) = 5 because (7^5 - 1)/6 = 2801 = 11111_7 is prime and (7^k - 1)/6 = 1, 8, 57, 400 for k = 1, 2, 3, 4. - _Bernard Schott_, Apr 23 2017
Table[Function[m, If[m > 0, k = 3; While[! PrimeQ[(m^k - 1)/(m - 1)], k++]; k, 0]]@ If[Set[e, GCD @@ #[[All, -1]]] > 1, {#, IntegerExponent[n, #]} &@ Power[n, 1/e] /. {{k_, m_} /; Or[Not[PrimePowerQ@ m], Prime@ m, FactorInteger[m][[1, 1]] == 2] :> 0, {k_, m_} /; m > 1 :> n}, n] &@ FactorInteger@ n, {n, 2, 17}] (* Michael De Vlieger, Apr 24 2017 *)
a052409(n) = my(k=ispower(n)); if(k, k, n>1) a052410(n) = if (ispower(n, , &r), r, n) is(n) = issquare(n) || (ispower(n) && !ispseudoprime((n^a052410(a052409(n))-1)/(n-1))) a(n) = if(is(n), 0, forprime(p=3, 2^16, if(ispseudoprime((n^p-1)/(n-1)), return(p)))) \\ Eric Chen, Jun 01 2015, corrected by Eric Chen, Jun 04 2018, after Charles R Greathouse IV in A052409 and Michel Marcus in A052410
A240765:=n->`if`(isprime((43^n - 1)/42), n, NULL); seq(A240765(n), n=1..100000); # Wesley Ivan Hurt, Apr 12 2014
Select[Prime[Range[100000]], PrimeQ[(43^#-1)/42]&]
is(n)=ispseudoprime((43^n-1)/42) \\ Charles R Greathouse IV, Feb 20 2017
Table[k=1; While[ !PrimeQ[Cyclotomic[k,n]], k++ ]; k, {n,100}]
A242797:=n->`if`(isprime((45^n - 1)/44), n, NULL); seq(A242797(n), n=1..100000); # Wesley Ivan Hurt, Apr 12 2014
Select[Prime[Range[100000]], PrimeQ[(45^# - 1)/44] &]
is(n)=ispseudoprime((45^n-1)/44) \\ Charles R Greathouse IV, Feb 20 2017
A243279:=n->`if`(isprime((46^n - 1)/45), n, NULL); seq(A243279(n), n=1..100000); # Wesley Ivan Hurt, Apr 12 2014
Select[Prime[Range[100000]], PrimeQ[(46^# - 1)/45] &]
is(n)=ispseudoprime((46^n-1)/45) \\ Charles R Greathouse IV, May 22 2017
A245237:=n->`if`(isprime((48^n - 1)/47), n, NULL); seq(A245237(n), n=1..100000); # Wesley Ivan Hurt, Apr 12 2014
Select[Prime[Range[100000]], PrimeQ[(48^# - 1)/47] &]
is(n)=ispseudoprime((48^n-1)/47) \\ Charles R Greathouse IV, Jun 06 2017
Select[Range[1, 10000], PrimeQ[(11^# - 6^#)/5] &]
for(n=1, 10000, if(isprime((11^n - 6^n)/5), print1(n, ", ")))
Select[Range[1, 10000], PrimeQ[(11^# - 7^#)/4] &]
for(n=1, 10000, if(isprime((11^n - 7^n)/4), print1(n, ", ")))
Select[Range[1, 10000], PrimeQ[(11^# - 8^#)/3] &]
for(n=1, 10000, if(isprime((11^n - 8^n)/3), print1(n, ", ")))
Comments