cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A028489 Duplicate of A005808.

Original entry on oeis.org

17, 19, 79, 139, 907, 1907, 2029, 4801, 5153, 10867
Offset: 0

Views

Author

Jean-Yves Perrier (nperrj(AT)ascom.ch)

Keywords

Comments

The original definition, "Exponents of generalized rep-units in base 11", lacks the requirement of primality. - M. F. Hasler, Mar 19 2013

A128164 Least k > 2 such that (n^k - 1)/(n-1) is prime, or 0 if no such prime exists.

Original entry on oeis.org

3, 3, 0, 3, 3, 5, 3, 0, 19, 17, 3, 5, 3, 3, 0, 3, 25667, 19, 3, 3, 5, 5, 3, 0, 7, 3, 5, 5, 5, 7, 0, 3, 13, 313, 0, 13, 3, 349, 5, 3, 1319, 5, 5, 19, 7, 127, 19, 0, 3, 4229, 103, 11, 3, 17, 7, 3, 41, 3, 7, 7, 3, 5, 0, 19, 3, 19, 5, 3, 29, 3, 7, 5, 5, 3, 41, 3, 3, 5, 3, 0, 23, 5, 17, 5, 11, 7, 61, 3, 3
Offset: 2

Views

Author

Alexander Adamchuk, Feb 20 2007

Keywords

Comments

a(n) = A084740(n) for all n except n = p-1, where p is an odd prime, for which A084740(n) = 2.
All nonzero terms are odd primes.
a(n) = 0 for n = {4,9,16,25,32,36,49,64,81,100,121,125,144,...}, which are the perfect powers with exceptions of the form n^(p^m) where p>2 and (n^(p^(m+1))-1)/(n^(p^m)-1) are prime and m>=1 (in which case a(n^(p^m))=p). - Max Alekseyev, Jan 24 2009
a(n) = 3 for n in A002384, i.e., for n such that n^2 + n + 1 is prime.
a(152) > 20000. - Eric Chen, Jun 01 2015
a(n) is the least number k such that (n^k - 1)/(n-1) is a Brazilian prime, or 0 if no such Brazilian prime exists. - Bernard Schott, Apr 23 2017
These corresponding Brazilian primes are in A285642. - Bernard Schott, Aug 10 2017
a(152) = 270217, see the top PRP link. - Eric Chen, Jun 04 2018
a(184) = 16703, a(200) = 17807, a(210) = 19819, a(306) = 26407, a(311) = 36497, a(326) = 26713, a(331) = 25033; a(185) > 66337, a(269) > 63659, a(281) > 63421, and there are 48 unknown a(n) for n <= 1024. - Eric Chen, Jun 04 2018
Six more terms found: a(522)=20183, a(570)=12907, a(684)=22573, a(731)=15427, a(820)=12043, a(996)=14629. - Michael Stocker, Apr 09 2020

Examples

			a(7) = 5 because (7^5 - 1)/6 = 2801 = 11111_7 is prime and (7^k - 1)/6 = 1, 8, 57, 400 for k = 1, 2, 3, 4. - _Bernard Schott_, Apr 23 2017
		

Crossrefs

Cf. A002384, A049409, A100330, A162862, A217070-A217089. (numbers b such that (b^p-1)/(b-1) is prime for prime p = 3 to 97)
A126589 gives locations of zeros.

Programs

  • Mathematica
    Table[Function[m, If[m > 0, k = 3; While[! PrimeQ[(m^k - 1)/(m - 1)], k++]; k, 0]]@ If[Set[e, GCD @@ #[[All, -1]]] > 1, {#, IntegerExponent[n, #]} &@ Power[n, 1/e] /. {{k_, m_} /; Or[Not[PrimePowerQ@ m], Prime@ m, FactorInteger[m][[1, 1]] == 2] :> 0, {k_, m_} /; m > 1 :> n}, n] &@ FactorInteger@ n, {n, 2, 17}] (* Michael De Vlieger, Apr 24 2017 *)
  • PARI
    a052409(n) = my(k=ispower(n)); if(k, k, n>1)
    a052410(n) = if (ispower(n, , &r), r, n)
    is(n) = issquare(n) || (ispower(n) && !ispseudoprime((n^a052410(a052409(n))-1)/(n-1)))
    a(n) = if(is(n), 0, forprime(p=3, 2^16, if(ispseudoprime((n^p-1)/(n-1)), return(p)))) \\ Eric Chen, Jun 01 2015, corrected by Eric Chen, Jun 04 2018, after Charles R Greathouse IV in A052409 and Michel Marcus in A052410

Extensions

a(18) = 25667 found by Henri Lifchitz, Sep 26 2007

A240765 Numbers n such that (43^n - 1)/42 is prime.

Original entry on oeis.org

5, 13, 6277, 26777, 27299, 40031, 44773, 194119
Offset: 1

Views

Author

Robert Price, Apr 12 2014

Keywords

Comments

a(8) > 10^5. - Robert Price, Apr 12 2014

Crossrefs

Programs

Extensions

a(8) from Paul Bourdelais, Aug 04 2020

A117545 Least k such that Phi(k,n), the k-th cyclotomic polynomial evaluated at n, is prime.

Original entry on oeis.org

2, 2, 1, 1, 3, 1, 5, 1, 6, 2, 9, 1, 5, 1, 3, 2, 3, 1, 19, 1, 3, 2, 5, 1, 6, 4, 3, 2, 5, 1, 7, 1, 3, 6, 21, 2, 10, 1, 6, 2, 3, 1, 5, 1, 19, 2, 10, 1, 14, 3, 6, 2, 11, 1, 6, 4, 3, 2, 3, 1, 7, 1, 5, 204, 12, 2, 6, 1, 3, 2, 3, 1, 5, 1, 3, 6, 3, 2, 5, 1, 6, 2, 5, 1, 5, 11, 7, 2, 3, 1, 6, 12, 7, 4, 7, 2, 17, 1, 3
Offset: 1

Views

Author

T. D. Noe, Mar 28 2006

Keywords

Comments

Note that a(n)=1 iff n-1 is prime because Phi(1,x)=x-1. For n<2048, we have the bound a(n)<251. However, a(2048) is greater than 10000. Is a(n) defined for all n? For fixed n, there are many sequences listing the k that make Phi(k,n) prime: A000043, A028491, A004061, A004062, A004063, A004023, A005808, A016054, A006032, A006033, A006034, A006035.

Crossrefs

Cf. A117544 (least k such that Phi(n, k) is prime).

Programs

  • Mathematica
    Table[k=1; While[ !PrimeQ[Cyclotomic[k,n]], k++ ]; k, {n,100}]

A242797 Numbers n such that (45^n - 1)/44 is prime.

Original entry on oeis.org

19, 53, 167, 3319, 11257, 34351, 216551
Offset: 1

Views

Author

Robert Price, May 22 2014

Keywords

Comments

a(7) > 10^5.
Numbers corresponding to a(4)-a(6) are probable primes.
All terms are prime.

Crossrefs

Programs

Extensions

a(7)=216551 corresponds to a probable prime discovered by Paul Bourdelais, Aug 04 2020

A243279 Numbers n such that (46^n - 1)/45 is prime.

Original entry on oeis.org

2, 7, 19, 67, 211, 433, 2437, 2719, 19531
Offset: 1

Views

Author

Robert Price, Jun 02 2014

Keywords

Comments

a(10) > 10^5.
Numbers corresponding to a(7)-a(9) are probable primes.
All terms are prime.

Crossrefs

Programs

A245237 Numbers k such that (48^k - 1)/47 is prime.

Original entry on oeis.org

19, 269, 349, 383, 1303, 15031, 200443, 343901
Offset: 1

Views

Author

Robert Price, Jul 14 2014

Keywords

Comments

a(7) > 10^5.
All terms are prime.

Crossrefs

Programs

Extensions

a(7) corresponds to a probable prime discovered by Paul Bourdelais, Aug 04 2020
a(8) from Paul Bourdelais, Mar 03 2025

A273598 Numbers k such that (11^k - 6^k)/5 is prime.

Original entry on oeis.org

2, 3, 11, 163, 191, 269, 1381, 1493, 38453
Offset: 1

Views

Author

Tim Johannes Ohrtmann, May 26 2016

Keywords

Comments

All terms are prime.
The corresponding primes: 17, 223, 56989774711, ...

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10000], PrimeQ[(11^# - 6^#)/5] &]
  • PARI
    for(n=1, 10000, if(isprime((11^n - 6^n)/5), print1(n, ", ")))

Extensions

a(9) from Michael S. Branicky, Nov 10 2024

A273599 Numbers k such that (11^k - 7^k)/4 is prime.

Original entry on oeis.org

5, 19, 67, 107, 593, 757, 1801, 2243, 2383, 6043, 10181, 11383, 15629
Offset: 1

Views

Author

Tim Johannes Ohrtmann, May 26 2016

Keywords

Comments

All terms are prime.
The corresponding primes: 36061, 15286922888307293287, 1483371444025889427763765389467527889556636442659800720575790059738807, ...
a(14) > 50000. - Michael S. Branicky, Nov 11 2024

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10000], PrimeQ[(11^# - 7^#)/4] &]
  • PARI
    for(n=1, 10000, if(isprime((11^n - 7^n)/4), print1(n, ", ")))

A273600 Numbers k such that (11^k - 8^k)/3 is prime.

Original entry on oeis.org

2, 7, 11, 17, 37, 521, 877, 2423
Offset: 1

Views

Author

Tim Johannes Ohrtmann, May 26 2016

Keywords

Comments

All terms are prime.
The corresponding primes: 19, 5796673, 92240578673, 167731742895202841, 113345629904382710526197539019199125641, ...
a(9) > 50000. - Michael S. Branicky, Nov 11 2024

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10000], PrimeQ[(11^# - 8^#)/3] &]
  • PARI
    for(n=1, 10000, if(isprime((11^n - 8^n)/3), print1(n, ", ")))
Showing 1-10 of 18 results. Next