A005891 Centered pentagonal numbers: (5n^2+5n+2)/2; crystal ball sequence for 3.3.3.4.4. planar net.
1, 6, 16, 31, 51, 76, 106, 141, 181, 226, 276, 331, 391, 456, 526, 601, 681, 766, 856, 951, 1051, 1156, 1266, 1381, 1501, 1626, 1756, 1891, 2031, 2176, 2326, 2481, 2641, 2806, 2976, 3151, 3331, 3516, 3706, 3901, 4101, 4306, 4516, 4731, 4951, 5176, 5406
Offset: 0
Examples
a(2)= 5*T(2) + 1 = 5*3 + 1 = 16, a(4) = 5*T(4) + 1 = 5*10 + 1 = 51. - _Thomas M. Green_, Nov 16 2009
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Cliff Reiter, Polygonal Numbers and Fifty One Stars, Lafayette College, Easton, PA (2019).
- Eric Weisstein's World of Mathematics, Centered Pentagonal Number.
- Index entries for sequences related to centered polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
- Index entries for crystal ball sequences
Crossrefs
Programs
-
Magma
[5*n*(n+1)/2 + 1: n in [0..50]]; // G. C. Greubel, Nov 04 2017
-
Maple
A005891 := proc(n) 1+5*n*(1+n)/2 ; end proc: seq(A005891(n),n=0..40) ; # R. J. Mathar, Oct 07 2021
-
Mathematica
FoldList[#1 + #2 &, 1, 5 Range@ 40] (* Robert G. Wilson v, Feb 02 2011 *) LinearRecurrence[{3,-3,1},{1,6,16},50] (* Harvey P. Dale, Sep 08 2018 *) Table[ j! Coefficient[Series[Exp[x]*(1 + 5 x^2/2)-1, {x, 0, 20}], x, j], {j, 0, 20}] (* Nikolaos Pantelidis, Feb 07 2023 *)
-
PARI
a(n)=5*n*(n+1)/2+1 \\ Charles R Greathouse IV, Mar 22 2016
-
Python
def A005891(n): return (5*n*(n+1)>>1)+1 # Chai Wah Wu, Mar 25 2025
Formula
G.f.: (1 + 3*x + x^2)/(1 - x)^3. Simon Plouffe in his 1992 dissertation
Narayana transform (A001263) of [1, 5, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=1, a(1)=6, a(2)=16. - Jaume Oliver Lafont, Dec 02 2008
a(n) = 5*A000217(n) + 1 = 5*T(n) + 1, for n = 0, 1, 2, 3, ... and where T(n) = n*(n+1)/2 = n-th triangular number. - Thomas M. Green, Nov 25 2009
a(n) = a(n-1) + 5*n, with a(0)=1. - Vincenzo Librandi, Nov 18 2010
a(n) = A028895(n) + 1. - Omar E. Pol, Oct 03 2011
a(n) = 2*a(n-1) - a(n-2) + 5. - Ant King, Jun 12 2012
Sum_{n>=0} 1/a(n) = 2*Pi /sqrt(15) *tanh(Pi/2*sqrt(3/5)) = 1.360613169863... - Ant King, Jun 15 2012
a(n) = A101321(5,n). - R. J. Mathar, Jul 28 2016
E.g.f.: (2 + 10*x + 5*x^2)*exp(x)/2. - Ilya Gutkovskiy, Jul 28 2016
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=0} a(n)/n! = 17*e/2.
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = 3/(2*e). (End)
Extensions
Formula corrected and relocated by Johannes W. Meijer, Nov 07 2009
Comments