cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005891 Centered pentagonal numbers: (5n^2+5n+2)/2; crystal ball sequence for 3.3.3.4.4. planar net.

Original entry on oeis.org

1, 6, 16, 31, 51, 76, 106, 141, 181, 226, 276, 331, 391, 456, 526, 601, 681, 766, 856, 951, 1051, 1156, 1266, 1381, 1501, 1626, 1756, 1891, 2031, 2176, 2326, 2481, 2641, 2806, 2976, 3151, 3331, 3516, 3706, 3901, 4101, 4306, 4516, 4731, 4951, 5176, 5406
Offset: 0

Views

Author

Keywords

Comments

Equals the triangular numbers convolved with [1, 3, 1, 0, 0, 0, ...]. - Gary W. Adamson and Alexander R. Povolotsky, May 29 2009
From Ant King, Jun 15 2012: (Start)
a(n) == 1 (mod 5) for all n.
The digital roots of the a(n) form a purely periodic palindromic 9-cycle 1, 6, 7, 4, 6, 4, 7, 6, 1.
The units' digits of the a(n) form a purely periodic palindromic 4-cycle 1, 6, 6, 1.
(End)
Binomial transform of (1, 5, 5, 0, 0, 0, ...) and second partial sum of (1, 4, 5, 5, 5, ...). - Gary W. Adamson, Sep 09 2015
a(n) = a(-1-n) for all n in Z. - Michael Somos, Jan 25 2019
On the plane start with a single regular pentagon, and repeat the following procedure, "For each edge of any pentagon not already connected to an existing pentagon create a mirror image such that the mirror image does not overlap with an existing pentagon." a(n) is the number of pentagons occupying the plane after n repetitions. - Torlach Rush, Sep 14 2022

Examples

			a(2)= 5*T(2) + 1 = 5*3 + 1 = 16, a(4) = 5*T(4) + 1 = 5*10 + 1 = 51. - _Thomas M. Green_, Nov 16 2009
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

Crossrefs

Cf. A028895, A001844, A003215, A004068 (partial sums), A006322, A001263.
Partial sums of A008706.
Equals second row of A167546 divided by 2.

Programs

Formula

G.f.: (1 + 3*x + x^2)/(1 - x)^3. Simon Plouffe in his 1992 dissertation
Narayana transform (A001263) of [1, 5, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=1, a(1)=6, a(2)=16. - Jaume Oliver Lafont, Dec 02 2008
a(n) = 5*A000217(n) + 1 = 5*T(n) + 1, for n = 0, 1, 2, 3, ... and where T(n) = n*(n+1)/2 = n-th triangular number. - Thomas M. Green, Nov 25 2009
a(n) = a(n-1) + 5*n, with a(0)=1. - Vincenzo Librandi, Nov 18 2010
a(n) = A028895(n) + 1. - Omar E. Pol, Oct 03 2011
a(n) = 2*a(n-1) - a(n-2) + 5. - Ant King, Jun 12 2012
Sum_{n>=0} 1/a(n) = 2*Pi /sqrt(15) *tanh(Pi/2*sqrt(3/5)) = 1.360613169863... - Ant King, Jun 15 2012
a(n) = A101321(5,n). - R. J. Mathar, Jul 28 2016
E.g.f.: (2 + 10*x + 5*x^2)*exp(x)/2. - Ilya Gutkovskiy, Jul 28 2016
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=0} a(n)/n! = 17*e/2.
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = 3/(2*e). (End)

Extensions

Formula corrected and relocated by Johannes W. Meijer, Nov 07 2009