cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006419 a(n) = 2^(2*n+1) - C(2*n+3,n+1) + C(2*n+1,n).

Original entry on oeis.org

0, 1, 7, 37, 176, 794, 3473, 14893, 63004, 263950, 1097790, 4540386, 18696432, 76717268, 313889477, 1281220733, 5219170052, 21224674118, 86188320962, 349550141078, 1416102710912, 5731427140268, 23177285611082, 93655986978002, 378195990166136, 1526289367335244
Offset: 0

Views

Author

Keywords

Comments

Number of rooted isthmusless planar maps with n+1 faces and 2 vertices. - Dan Drake, Aug 08 2005
a(n) = total area below all Dyck (n+1)-paths and above the lowest possible Dyck path, namely, UDUD...UD (taking upsteps of unit length). For example, the areas below the 5 Dyck 3-paths UUUDDD, UUDUDD, UDUUDD, UUDDUD, UDUDUD are 3,2,1,1,0 respectively, yielding a(2)=3+2+1+1+0=7. - David Callan, Jul 03 2006
Convolution of A000245 and A000302 (powers of 4).- Philippe Deléham, Jun 02 2013

Examples

			G.f. = x + 7*x^2 + 37*x^3 + 176*x^4 + 794*x^5 + 3473*x^6 + 14893*x^7 + 63004*x^8 + ...
		

References

  • D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A342981.

Programs

  • Maple
    f := n->2^(2*n+1)-binomial(2*n+3,n+1)+binomial(2*n+1,n); seq(f(n), n=0..30);
  • Mathematica
    Table[2^(2 n + 1) - Binomial[2 n + 3, n + 1] +
    Binomial[2 n + 1, n], {n, 0, 30}] (* Wesley Ivan Hurt, Mar 30 2014 *)
  • Maxima
    a(n):=sum(binomial(2*(n+1),n-k-1),k,0,n); /* Vladimir Kruchinin, Oct 23 2016 */

Formula

a(n+1) = Sum_{k=0..n} (n-k)*A000108(n-k)*A001700(k). - Philippe Deléham, Jan 25 2004
G.f.: c(x)^3*x/(1-4x) where c(x) = g.f. for the Catalan numbers A000108. - Philippe Deléham, Jun 02 2013
a(n) = Integral_{x=0..4} x^n*W(x)*dx, n >= 0, is the integral representation as n-th moment of a signed weight function W(x), where W(x) = W_a(x) + W_c(x), with W_a(x) = 2*Dirac(x-4), which is the discrete (atomic) part, and W_c(x) = (1/(2*Pi))*(1-x)*sqrt(x/(4-x)) is the continuous part of W(x): W_c(0) = W_c(1) = 0, W_c(x) > 0 for x < 1, lim_{x->4} W_c(x) = -oo. - Karol A. Penson, Jul 31 2013 [edited by Michel Marcus, Mar 14 2020]
(n+2)*a(n) + (-9*n-10)*a(n-1) + 2*(12*n+1)*a(n-2) + 8*(-2*n+3)*a(n-3) = 0. - R. J. Mathar, Mar 30 2014
a(n) = Sum_{k=0..n} binomial(2*(n+1), n-k-1). - Vladimir Kruchinin, Oct 23 2016
0 = a(n)*(+256*a(n+1) - 992*a(n+2) + 520*a(n+3) - 72*a(n+4)) + a(n+1)*(+224*a(n+1) + 344*a(n+2) - 398*a(n+3) + 70*a(n+4)) + a(n+2)*(+6*a(n+2) + 59*a(n+3) - 17*a(n+4)) + a(n+3)*(-a(n+3) + a(n+4)), for all n >= 0. - Michael Somos, Oct 23 2016
a(n) = [x^n] x/((1 - 2*x)*(1 - x)^(n+3)). - Ilya Gutkovskiy, Oct 25 2017
From Seiichi Manyama, Jul 29 2025: (Start)
a(n) = Sum_{k=0..n-1} binomial(2*k+1+l,k) * binomial(2*n-2*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 2^(n-k-1) * binomial(n+k+2,k). (End)