A217386 Emirps (A006567) whose difference with the reversal is a perfect square.
37, 73, 1237, 3019, 7321, 9103, 104801, 105601, 106501, 108401, 111211, 112111, 120121, 121021, 137831, 138731, 144541, 145441, 150151, 151051, 161561, 165161, 167861, 168761, 171271, 172171, 180181, 181081, 185681, 186581, 189337, 194891, 198491, 302647, 305603, 306503
Offset: 1
Examples
37 and 73 are primes. 73 - 37 = 36, which is 6^2. 302647 is prime, the reversal 746203 is also prime. 746203 - 302547 = 443556 = 666^2.
Links
- Antonio Roldán, Table of n, a(n) for a(n)<10^6
Programs
-
PARI
isinteger(n)=(n==truncate(n)) reverse(n)=eval(concat(Vecrev(Str(n)))) isquare(n)= { local(f,m,p=0); if(n==1,p=1,f=factor(n); m=gcd(f[, 2]); if(isinteger(m/2),p=1));return(p) } {for(i=2,10^7,p=reverse(i);if(isprime(i)&&isprime(p)&&isquare(abs(i-p)),print1(i", ")))} /* Antonio Roldán, Dec 20 2012 */
Comments