A006634 a(n) = 3*binomial(4*n+8, n)/(n+3).
1, 9, 72, 570, 4554, 36855, 302064, 2504304, 20974005, 177232627, 1509395976, 12943656180, 111676661460, 968786892675, 8445123522144, 73940567860896, 649942898236596, 5733561315124260, 50744886833898400, 450461491952952690, 4009721145437152530, 35782256673785401065
Offset: 0
References
- H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Simon Plouffe, Approximations of generating functions and a few conjectures, arXiv:0911.4975 [math.NT], 2002.
Programs
-
Magma
A006634:= func< n | 3*Binomial(4*n+8,n)/(n+3) >; [A006634(n): n in [0..40]]; // G. C. Greubel, Sep 01 2025
-
Maple
series(RootOf(g = 1+x*g^4,g)^9, x=0, 30); # Mark van Hoeij, Apr 22 2013
-
Mathematica
f[x_] := HypergeometricPFQ[ {9/4, 5/2, 11/4, 3}, {10/3, 11/3, 4}, 256/27*x]; Series[f[x], {x, 0, 16}] // CoefficientList[#, x]& (* Jean-François Alcover, Apr 23 2013, after Simon Plouffe *) Table[3*Binomial[4*n+8,n]/(n+3), {n,0,40}] (* G. C. Greubel, Sep 01 2025 *)
-
PARI
N = 3*66; x = 'x + O('x^N); g=serreverse(x-x^4)/x; gf=g^9; v=Vec(gf); vector(#v\3,n,v[3*n-2]) /* Joerg Arndt, Apr 23 2013 */
-
SageMath
def A006634(n): return 3*binomial(4*(n+2),n)//(n+3) print([A006634(n) for n in range(41)]) # G. C. Greubel, Sep 01 2025
Formula
G.f.: hypergeom([9/4, 5/2, 11/4, 3], [10/3, 11/3, 4], 256/27*x). - Simon Plouffe, Master's Thesis, UQAM, 1992
G.f.: g^9 where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Apr 22 2013
From G. C. Greubel, Sep 01 2025: (Start)
a(n) = 3*binomial(4*n+8, n)/(n+3).
E.g.f.: hypergeom([9/4, 5/2, 11/4, 3], [1, 10/3, 11/3, 4], 256*x/27). (End)
Extensions
More terms from Joerg Arndt, Apr 23 2013
New name by G. C. Greubel, Sep 01 2025
Comments