A006720 Somos-4 sequence: a(0)=a(1)=a(2)=a(3)=1; for n >= 4, a(n) = (a(n-1) * a(n-3) + a(n-2)^2) / a(n-4).
1, 1, 1, 1, 2, 3, 7, 23, 59, 314, 1529, 8209, 83313, 620297, 7869898, 126742987, 1687054711, 47301104551, 1123424582771, 32606721084786, 1662315215971057, 61958046554226593, 4257998884448335457, 334806306946199122193, 23385756731869683322514, 3416372868727801226636179
Offset: 0
References
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 565.
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; pp. 9, 179.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Robert G. Wilson v, Table of a(n) for n = 0..100.
- Paul Barry, Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences, Journal of Integer Sequences, Vol. 15 2012, #12.8.2. - From _N. J. A. Sloane_, Dec 29 2012
- Paul Barry, On the Hurwitz Transform of Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7.
- Paul Barry, Riordan arrays, the A-matrix, and Somos 4 sequences, arXiv:1912.01126 [math.CO], 2019.
- Paul Barry, Integer sequences from elliptic curves, arXiv:2306.05025 [math.NT], 2023.
- H. W. Braden, V. Z. Enolskii and A. N. W. Hone, Bilinear recurrences and addition formulas for hyperelliptic sigma functions, arXiv:math/0501162 [math.NT], 2005.
- R. H. Buchholz and R. L. Rathbun, An infinite set of Heron triangles with two rational medians, Amer. Math. Monthly, 104 (1997), 107-115.
- Xiangke Chang and Xingbiao Hu, A conjecture based on Somos-4 sequence and its extension, Linear Algebra Appl. 436, No. 11, 4285-4295 (2012).
- Harini Desiraju and Brady Haran, The Troublemaker Number, Numberphile video (2022).
- S. B. Ekhad and D. Zeilberger, How To Generate As Many Somos-Like Miracles as You Wish, arXiv preprint arXiv:1303.5306[math.CO], 2013.
- Graham Everest, Gerard Mclaren and Tom Ward, Primitive divisors of elliptic divisibility sequences, arXiv:math/0409540 [math.NT], 2004-2006.
- G. Everest, S. Stevens, D. Tamsett and T. Ward, Primitive divisors of quadratic polynomial sequences, arXiv:math/0412079v1 [math.NT], 2004.
- G. Everest et al., Primes generated by recurrence sequences, arXiv:math/0412079 [math.NT], 2006.
- G. Everest et al., Primes generated by recurrence sequences, Amer. Math. Monthly, 114 (No. 5, 2007), 417-431.
- S. Fomin and A. Zelevinsky, The Laurent phenomenon, arXiv:math/0104241 [math.CO], 2001.
- Allan Fordy and Andrew Hone, Discrete integrable systems and Poisson algebras from cluster maps, arXiv preprint arXiv:1207.6072 [nlin.SI], 2012.
- A. P. Fordy, Periodic Cluster Mutations and Related Integrable Maps, arXiv preprint arXiv:1403.8061 [math-ph], 2014.
- A. P. Fordy, Mutation-periodic quivers, integrable maps and associated Poisson algebras, Phil Trans. R. Soc. Lond. Ser A (Math. Phys. Eng. Sci.) 369 (1939) (2011) 1264-1279.
- David Gale, The strange and surprising saga of the Somos sequences, in Mathematical Entertainments, Math. Intelligencer 13(1) (1991), pp. 40-42.
- R. W. Gosper and Richard C. Schroeppel, Somos Sequence Near-Addition Formulas and Modular Theta Functions, arXiv:math/0703470 [math.NT], 2007.
- A. N. W. Hone, Sigma function solution of the initial value problem for Somos 5 sequences, arXiv:math/0501554 [math.NT], 2005-2006.
- A. N. W. Hone, Algebraic curves, integer sequences and a discrete Painlevé transcendent, Proceedings of SIDE 6, Helsinki, Finland, 2004; arXiv:0807.2538 [nlin.SI], 2008.
- A. N. W. Hone, Elliptic curves and quadratic recurrence sequences, Bull. Lond. Math. Soc. 37 (2005) 161-171.
- Andrew N. W. Hone, Growth of Mahler measure and algebraic entropy of dynamics with the Laurent property, arXiv:2109.08217 [math.NT], 2021.
- A. N. W. Hone and R. Inoue, Discrete Painlevé equations from Y-systems, arXiv preprint arXiv:1405.5379 [math-ph], 2014
- R. Jones and J. Rouse, Galois Theory of Iterated Endomorphisms, arXiv:0706.2384 [math.NT], 2007-2009; Proceedings of the London Mathematical Society, 100, no. 3 (2010), 763-794.
- Xinrong Ma, Magic determinants of Somos sequences and theta functions, Discrete Mathematics 310.1 (2010): 1-5.
- J. L. Malouf, An integer sequence from a rational recursion, Discr. Math. 110 (1992), 257-261.
- Valentin Ovsienko and Serge Tabachnikov, Dual numbers, weighted quivers, and extended Somos and Gale-Robinson sequences, arXiv:1705.01623 [math.CO], 2017. See p. 3.
- Kevin I. Piterman and Leandro Vendramin, Computer algebra with GAP, 2023. See p. 39.
- J. Propp, The Somos Sequence Site
- J. Propp, The 2002 REACH tee-shirt
- R. M. Robinson, Periodicity of Somos sequences, Proc. Amer. Math. Soc., 116 (1992), 613-619.
- Helmut Ruhland, Somos-4 and a quartic Surface in RP^3, arXiv:2312.02085 [math.AG], 2023.
- Matthew Christopher Russell, Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrences, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
- Vladimir Shevelev and Peter J. C. Moses, On a sequence of polynomials with hypothetically integer coefficients, arXiv preprint arXiv:1112.5715 [math.NT], 2011.
- Michael Somos, Somos 6 Sequence
- Michael Somos, Brief history of the Somos sequence problem
- Michael Somos, Four polynomial sequences w,x,y,z are discrete versions of the four Jacobi theta functions or the four Weierstrass sigma functions, 2016.
- D. E. Speyer, Perfect matchings and the octahedral recurrence, arXiv:math/0402452 [math.CO], 2004.
- Alex Stone, The Astonishing Behavior of Recursive Sequences, Quanta Magazine, Nov 16 2023, 13 pages.
- Andrei K. Svinin, Somos-4 equation and related equations, arXiv:2307.05866 [math.CA], 2023.
- P. H. van der Kamp, Somos-4 and Somos-5 are arithmetic divisibility sequences, arXiv:1505.00194 [math.NT], 2015.
- A. J. van der Poorten, Recurrence relations for elliptic sequences: every Somos 4 is a Somos k, arXiv:math/0412293 [math.NT], 2004.
- A. J. van der Poorten, Hyperelliptic curves, continued fractions and Somos sequences, arXiv:math/0608247 [math.NT], 2006.
- A. J. van der Poorten, Elliptic curves and continued fractions, J. Int. Sequences, Volume 8, no. 2 (2005), article 05.2.5.
- Leandro Vendramin, Mini-couse on GAP - Exercises, Universidad de Buenos Aires (Argentina, 2020).
- Eric Weisstein's World of Mathematics, Somos Sequence
- Index entries for two-way infinite sequences
Crossrefs
Programs
-
Haskell
a006720 n = a006720_list !! n a006720_list = [1,1,1,1] ++ zipWith div (foldr1 (zipWith (+)) (map b [1..2])) a006720_list where b i = zipWith (*) (drop i a006720_list) (drop (4-i) a006720_list) -- Reinhard Zumkeller, Jan 22 2012
-
Magma
I:=[1,1,1,1]; [n le 4 select I[n] else (Self(n-1)*Self(n-3)+Self(n-2)^2)/Self(n-4): n in [1..30]]; // Vincenzo Librandi, Aug 07 2017
-
Maple
Digits:=11; f(x):=4*x^3-4*x+1;sols:=evalf(solve(f(x),x)); e1:=Re(sols[1]); e3:=Re(sols[2]); w1:=evalf(Int((f(x))^(-0.5),x=e1..infinity)); w3:=I*evalf(Int((-f(x))^(-0.5),x=-infinity..e3)); k:=2*w1-evalf(Int((f(x))^(-0.5),x=1..infinity)); z0:=w3+evalf(Int((f(x))^(-0.5),x=e3..-1)); A:=1/WeierstrassSigma(z0,4.0,-1.0); B:=WeierstrassSigma(k,4.0,-1.0)/WeierstrassSigma(z0+k,4.0,-1.0)/A; for n from 0 to 10 do a[n]:=A*B^n*WeierstrassSigma(z0+n*k,4.0,-1.0)/(WeierstrassSigma(k,4.0,-1.0))^(n^2) od; # Andrew Hone, Oct 12 2005 A006720 := proc(n) option remember; if n <= 3 then 1; else (procname(n-1)*procname(n-3)+procname(n-2)^2)/procname(n-4) ; end if; end proc: # R. J. Mathar, Jul 12 2012
-
Mathematica
a[0] = a[1] = a[2] = a[3] = 1; a[n_] := a[n] = (a[n - 1] a[n - 3] + a[n - 2]^2)/a[n - 4]; Array[a, 23] (* Robert G. Wilson v, Jul 04 2007 *) RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]a[n-3]+a[n-2]^2)/ a[n-4]},a,{n,30}] (* Harvey P. Dale, Apr 07 2018 *) b[ n_] := If[-2<=n<=2, {2, 1, 1, 3, 23}[[n+3]], 2*a[n+2]^3*a[n+3] + a[n+1]^2*(a[n+3]*a[n+4] - a[n+2]*a[n+5])]; a[ n_] := If[OddQ[n], b[(n-3)/2], b[-n/2]]; (* Michael Somos, Feb 28 2022 *)
-
PARI
a=vector(99);a[1]=a[2]=a[3]=a[4]=1;for(n=5,#a,a[n]=(a[n-1]*a[n-3]+a[n-2]^2)/a[n-4]); a \\ Charles R Greathouse IV, Jun 16 2011
-
Python
from gmpy2 import divexact A006720 = [1, 1, 1, 1] for n in range(4, 101): A006720.append(divexact(A006720[n-1]*A006720[n-3]+A006720[n-2]**2,A006720[n-4])) # Chai Wah Wu, Sep 01 2014
Formula
a(n) = a(3-n) = (-1)^n * A006769(2*n-3) for all n in Z.
a(n+1)/a(n) seems to be asymptotic to C^n with C = 1.226.... - Benoit Cloitre, Aug 07 2002. Confirmed by Hone - see below.
The terms of the sequence have the leading order asymptotics log a(n) ~ D n^2 with D = zeta(w1)*k^2/(2*w1) - log|sigma(k)| = 0.10222281... where zeta and sigma are the Weierstrass functions with invariants g2 = 4, g3 = -1, w1 = 1.496729323 is the real half-period of the corresponding elliptic curve, k = -1.134273216 as above. This agrees with Benoit Cloitre's numerical result with C = exp(2D) = 1.2268447... - Andrew Hone, Feb 09 2005
a(n) = (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4); a(0) = a(1) = a(2) = a(3) = 1; exact formula is a(n) = A*B^n*sigma (z_0+nk)/(sigma (k))^(n^2), where sigma is the Weierstrass sigma function associated to the elliptic curve y^2 = 4*x^3-4*x+1, A = 1/sigma(z_0) = 0.112724016 - 0.824911687*i, B = sigma(k)*sigma (z_0)/sigma (z_0+k) = 0.215971963 + 0.616028193*i, k = 1.859185431, z_0 = 0.204680500 + 1.225694691*i, sigma(k) = 1.555836426, all to 9 decimal places. This is a special case of a general formula for 4th-order bilinear recurrences. The Somos-4 sequence corresponds to the sequence of points (2n-3)P on the curve, where P = (0, 1). - Andrew Hone, Oct 12 2005
a(2*n) = b(-n), a(2*n+1) = b(n-1) where b(n) = A188313(n) for all n in Z. - Michael Somos, Feb 27 2022
Comments