cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006857 a(n) = binomial(n+5,5) * binomial(n+5,4)/(n+5).

Original entry on oeis.org

1, 15, 105, 490, 1764, 5292, 13860, 32670, 70785, 143143, 273273, 496860, 866320, 1456560, 2372112, 3755844, 5799465, 8756055, 12954865, 18818646, 26883780, 37823500, 52474500, 71867250, 97260345, 130179231, 172459665, 226296280, 294296640, 379541184
Offset: 0

Views

Author

Keywords

Comments

Number of permutations of n+5 that avoid the pattern 132 and have exactly 4 descents.
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Nov 18 2005
Partial sums of A114242. - Peter Bala, Sep 21 2007
Dimensions of certain Lie algebra (see reference for precise definition).

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 167-169, Table 10.5/II/1).
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 239.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The expression binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1) for the values m = 2 through 14 produces the sequences A000012, A000217, A002415, A006542, A006857, A108679, A134288, A134289, A134290, A134291, A140925, A140935, A169937.
5th column of the table of Narayana numbers A001263.

Programs

  • Magma
    A006857:= func< n | Binomial(n+4,3)*Binomial(n+5,5)/4 >;
    [A006857(n): n in [0..40]]; // G. C. Greubel, Mar 12 2025
    
  • Maple
    a:=n->(n+1)*(n+2)^2*(n+3)^2*(n+4)^2*(n+5)/2880: seq(a(n),n=0..38); # Emeric Deutsch, Nov 18 2005
  • Mathematica
    Table[Binomial[n+5,5] * Binomial[n+5,4]/(n+5), {n, 0, 50}] (* T. D. Noe, May 29 2012 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,15,105,490,1764,5292,13860,32670,70785},40] (* Harvey P. Dale, Oct 19 2024 *)
  • PARI
    a(n) = binomial(n+5,5) * binomial(n+5,4)/(n+5) \\ Charles R Greathouse IV, Jun 11 2015
    
  • PARI
    Vec((1+6*x+6*x^2+x^3)/(1-x)^9 + O(x^99)) \\ Altug Alkan, Sep 01 2016
    
  • SageMath
    def A006857(n): return binomial(n+4,3)*binomial(n+5,5)//4
    print([A006857(n) for n in range(41)]) # G. C. Greubel, Mar 12 2025

Formula

From - Vladeta Jovovic, Jan 29 2003: (Start)
a(n) = (n+4)!*(n+5)!/(2880*n!*(n+1)!).
E.g.f.: 1/2880*(2880 + 40320*x + 109440*x^2 + 105120*x^3 + 45000*x^4 + 9504*x^5 + 1016*x^6 + 52*x^7 + x^8)*exp(x). (End)
From Mike Zabrocki, Aug 26 2004: (Start)
a(n) = C(n+5,8) + 6*C(n+6,8) + 6*C(n+7,8) + C(n+8,8).
a(n) = C(n+4,4)*C(n+5,4)/5.
O.g.f.: (1 + 6*x + 6*x^2 + x^3)/(1-x)^9. (End)
From Wolfdieter Lang, Nov 13 2007: (Start)
a(n) = A001263(n+5,5).
Numerator polynomial of the g.f is the fourth row polynomial of the Narayana triangle. (End)
a(n)= C(n+4,4)^2 - C(n+4,3)*C(n+4,5). - Gary Detlefs, Dec 05 2011
a(n) = Product_{i=1..4} A002378(n+i)/A002378(i). - Bruno Berselli, Sep 01 2016
From Amiram Eldar, Oct 19 2020: (Start)
Sum_{n>=0} 1/a(n) = 25 * (79 - 8*Pi^2).
Sum_{n>=0} (-1)^n/a(n) = 595/3 - 20*Pi^2. (End)

Extensions

More terms from Vladeta Jovovic, Jan 29 2003
Better description from Mike Zabrocki, Aug 26 2004
New definition from N. J. A. Sloane, Aug 28 2010
Zabrocki formulas offset corrected by Gary Detlefs, Dec 05 2011