A006857 a(n) = binomial(n+5,5) * binomial(n+5,4)/(n+5).
1, 15, 105, 490, 1764, 5292, 13860, 32670, 70785, 143143, 273273, 496860, 866320, 1456560, 2372112, 3755844, 5799465, 8756055, 12954865, 18818646, 26883780, 37823500, 52474500, 71867250, 97260345, 130179231, 172459665, 226296280, 294296640, 379541184
Offset: 0
References
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 167-169, Table 10.5/II/1).
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 239.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Brandy Amanda Barnette, Counting Convex Sets on Products of Totally Ordered Sets, Masters Theses & Specialist Projects, Paper 1484, 2015.
- G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31.
- G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31. [Annotated scanned copy]
- J. M. Landsberg and L. Manivel, The sextonions and E7 1/2, Adv. Math. 201 (2006), 143-179. [Th. 7.3, case a=4]
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 25.
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Crossrefs
Programs
-
Magma
A006857:= func< n | Binomial(n+4,3)*Binomial(n+5,5)/4 >; [A006857(n): n in [0..40]]; // G. C. Greubel, Mar 12 2025
-
Maple
a:=n->(n+1)*(n+2)^2*(n+3)^2*(n+4)^2*(n+5)/2880: seq(a(n),n=0..38); # Emeric Deutsch, Nov 18 2005
-
Mathematica
Table[Binomial[n+5,5] * Binomial[n+5,4]/(n+5), {n, 0, 50}] (* T. D. Noe, May 29 2012 *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,15,105,490,1764,5292,13860,32670,70785},40] (* Harvey P. Dale, Oct 19 2024 *)
-
PARI
a(n) = binomial(n+5,5) * binomial(n+5,4)/(n+5) \\ Charles R Greathouse IV, Jun 11 2015
-
PARI
Vec((1+6*x+6*x^2+x^3)/(1-x)^9 + O(x^99)) \\ Altug Alkan, Sep 01 2016
-
SageMath
def A006857(n): return binomial(n+4,3)*binomial(n+5,5)//4 print([A006857(n) for n in range(41)]) # G. C. Greubel, Mar 12 2025
Formula
From - Vladeta Jovovic, Jan 29 2003: (Start)
a(n) = (n+4)!*(n+5)!/(2880*n!*(n+1)!).
E.g.f.: 1/2880*(2880 + 40320*x + 109440*x^2 + 105120*x^3 + 45000*x^4 + 9504*x^5 + 1016*x^6 + 52*x^7 + x^8)*exp(x). (End)
From Mike Zabrocki, Aug 26 2004: (Start)
a(n) = C(n+5,8) + 6*C(n+6,8) + 6*C(n+7,8) + C(n+8,8).
a(n) = C(n+4,4)*C(n+5,4)/5.
O.g.f.: (1 + 6*x + 6*x^2 + x^3)/(1-x)^9. (End)
From Wolfdieter Lang, Nov 13 2007: (Start)
a(n) = A001263(n+5,5).
Numerator polynomial of the g.f is the fourth row polynomial of the Narayana triangle. (End)
a(n)= C(n+4,4)^2 - C(n+4,3)*C(n+4,5). - Gary Detlefs, Dec 05 2011
From Amiram Eldar, Oct 19 2020: (Start)
Sum_{n>=0} 1/a(n) = 25 * (79 - 8*Pi^2).
Sum_{n>=0} (-1)^n/a(n) = 595/3 - 20*Pi^2. (End)
Extensions
More terms from Vladeta Jovovic, Jan 29 2003
Better description from Mike Zabrocki, Aug 26 2004
New definition from N. J. A. Sloane, Aug 28 2010
Zabrocki formulas offset corrected by Gary Detlefs, Dec 05 2011
Comments