cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A165313 Triangle T(n,k) = A091137(k-1) read by rows.

Original entry on oeis.org

1, 1, 2, 1, 2, 12, 1, 2, 12, 24, 1, 2, 12, 24, 720, 1, 2, 12, 24, 720, 1440, 1, 2, 12, 24, 720, 1440, 60480, 1, 2, 12, 24, 720, 1440, 60480, 120960, 1, 2, 12, 24, 720, 1440, 60480, 120960, 3628800, 1, 2, 12, 24, 720, 1440, 60480, 120960, 3628800, 7257600, 1, 2, 12
Offset: 1

Views

Author

Paul Curtz, Sep 14 2009

Keywords

Comments

From a study of modified initialization formulas in Adams-Bashforth (1855-1883) multisteps method for numerical integration. On p.36, a(i,j) comes from (j!)*a(i,j) = Integral_{u=i,..,i+1} u*(u-1)*...*(u-j+1) du; see p.32.
Then, with i vertical, j horizontal, with unreduced fractions, partial array is:
0) 1, 1/2, -1/12, 1/24, -19/720, 27/1440, ... = 1/log(2)
1) 1, 3/2, 5/12, -1/24, 11/720, -11/1440, ... = 2/log(2)
2) 1, 5/2, 23/12, 9/24, -19/720, 11/1440, ... = 4/log(2)
3) 1, 7/2, 53/12, 55/24, 251/720, -27/1440, ... = 8/log(2)
4) 1, 9/2, 95/12, 161/24, 1901/720, 475/1440, ... = 16/log(2)
5) 1, 11/2, 149/12, 351/24, 6731/720, 4277/1440, ... = 32/log(2)
... [improved by Paul Curtz, Jul 13 2019]
First line: the reduced terms are A002206/A002207, logarithmic or Gregory numbers G(n). The difference between the second line and the first one is 0 together A002206/A002207. This is valid for the next lines. - Paul Curtz, Jul 13 2019
See A141417, A140825, A157982, horizontal numerators: A141047, vertical numerators: A000012, A005408, A140811, A141530, A157411. On p.56, coefficients are s(i,q) = (1/q!)* Integral_{u=-i-1,..,1} u*(u+1)*...*(u+q-1) du.
Unreduced fractions array is:
-1) 1, 1/2, 5/12, 9/24, 251/720, 475/1440, ... = A002657/A091137
0) 2, 0/2, 4/12, 8/24, 232/720, 448/1440, ... = A195287/A091137
1) 3, -3/2, 9/12, 9/24, 243/720, 459/1440, ...
2) 4, -8/2, 32/12, 0/24, 224/720, 448/1440, ...
3) 5, -15/2, 85/12, -55/24, 475/720, 475/1440, ...
...
(on p.56 up to 6)). See A147998. Vertical numerators: A000027, A147998, A152064, A157371, A165281.
From Paul Curtz, Jul 14 2019: (Start)
Difference table from the second line and the first one difference:
1, -1/2, -1/12, -1/24, -19/720, -27/1440, ...
-3/2, 5/12, 1/24, 11/720, 11/1440, ...
23/12, -9/24, -19/720, -11/1440, ...
-55/24, 251/720, 27/1440, ...
1901/720, -475/1440,
-4277/1440, ...
...
Compare the lines to those of the first array.
The verticals are the signed diagonals of the first array. (End)

Examples

			1;
1,2;
1,2,12;
1,2,12,24;
1,2,12,24,720;
		

References

  • P. Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Centre de Calcul Scientifique de l'Armement, Note 12, Arcueil, 1969.

Crossrefs

Programs

  • Mathematica
    (* a = A091137 *) a[n_] := a[n] = Product[d, {d, Select[Divisors[n]+1, PrimeQ]}]*a[n-1]; a[0]=1; Table[Table[a[k-1], {k, 1, n}], {n, 1, 11}] // Flatten (* Jean-François Alcover, Dec 18 2014 *)

A059542 Beatty sequence for 1 + 1/log(2).

Original entry on oeis.org

2, 4, 7, 9, 12, 14, 17, 19, 21, 24, 26, 29, 31, 34, 36, 39, 41, 43, 46, 48, 51, 53, 56, 58, 61, 63, 65, 68, 70, 73, 75, 78, 80, 83, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 109, 112, 114, 117, 119, 122, 124, 127, 129, 131, 134, 136, 139, 141, 144, 146, 149, 151
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Crossrefs

Beatty complement is A059541.

Programs

  • Mathematica
    Floor[Range[100]*(1 + 1/Log[2])] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    { default(realprecision, 100); b=1 + 1/log(2); for (n = 1, 2000, write("b059542.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009

Formula

a(n) = floor(n*(1+1/log(2))). - Michel Marcus, Jan 04 2015
a(n) = n+A307513(n). - R. J. Mathar, Jan 04 2020

A059183 Engel expansion of 1/log(2) = 1.4427...

Original entry on oeis.org

1, 3, 4, 4, 5, 5, 5, 6, 47, 109, 935, 4763, 7821, 8895, 9889, 35798, 44347, 1146551, 7874944, 8043393, 27403243, 34058912, 58098040, 68760470, 80046897, 560099631, 611427977, 14235032003, 602865059026, 813485869378
Offset: 1

Views

Author

Mitch Harris, May 16 2003

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A007525 (1/log(2)).

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[1/Log[2], 7!], 100] (* Modified by G. C. Greubel, Dec 27 2016 *)

A141602 Integer part of 2^n/log(2^n).

Original entry on oeis.org

2, 2, 3, 5, 9, 15, 26, 46, 82, 147, 268, 492, 909, 1688, 3151, 5909, 11123, 21010, 39809, 75638, 144073, 275050, 526182, 1008516, 1936352, 3723754, 7171675, 13831089, 26708310, 51636066, 99940774, 193635250, 375535031, 728979766, 1416303547
Offset: 1

Views

Author

Cino Hilliard, Aug 21 2008

Keywords

Comments

2^n/log(2^n) is an approximation to the number of primes < 2^n.

Crossrefs

Programs

  • Magma
    A141602:= func< n | Floor(2^n/(n*Log(2))) >;
    [A141602(n): n in [1..40]]; // G. C. Greubel, Sep 21 2024
    
  • Mathematica
    Floor[2^#/Log[2^#]]&/@Range[40] (* Harvey P. Dale, Mar 11 2013 *)
  • PARI
    g(n) = for(x=1,n,y=floor(2^x/log(2^x));print1(y","))
    
  • PARI
    a(n) = 2^n\log(2^n); \\ Michel Marcus, Feb 24 2021
    
  • SageMath
    def A141602(n): return int(2^n/(n*log(2)))
    [A141602(n) for n in range(1,41)] # G. C. Greubel, Sep 21 2024

Formula

a(n) = A050500(2^n) = floor(2^n*A007525/n) >= A000799(n). - R. J. Mathar, Jan 05 2009

A307513 Beatty sequence for 1/log(2).

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 64, 66, 67, 69, 70, 72, 73, 75, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89, 90, 92, 93, 95, 96, 98, 99, 100, 102, 103, 105, 106, 108, 109, 111, 112, 113, 115
Offset: 1

Views

Author

R. J. Mathar, Apr 12 2019

Keywords

Comments

Very similar to A059539 because A002581 is close to A007525.

Crossrefs

Cf. A007525.

Formula

a(n) = floor(n*A007525).
A166986(n) = 2*a(n+2)-4.

A242053 Decimal expansion of 1/log(2)-1, the mean value of a random variable following the Gauss-Kuzmin distribution.

Original entry on oeis.org

4, 4, 2, 6, 9, 5, 0, 4, 0, 8, 8, 8, 9, 6, 3, 4, 0, 7, 3, 5, 9, 9, 2, 4, 6, 8, 1, 0, 0, 1, 8, 9, 2, 1, 3, 7, 4, 2, 6, 6, 4, 5, 9, 5, 4, 1, 5, 2, 9, 8, 5, 9, 3, 4, 1, 3, 5, 4, 4, 9, 4, 0, 6, 9, 3, 1, 1, 0, 9, 2, 1, 9, 1, 8, 1, 1, 8, 5, 0, 7, 9, 8, 8, 5, 5, 2, 6, 6, 2, 2, 8, 9, 3, 5, 0, 6, 3, 4, 4
Offset: 0

Views

Author

Jean-François Alcover, Aug 13 2014

Keywords

Examples

			0.4426950408889634073599246810018921374266459541529859341354494...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.17 Gauss-Kuzmin-Wirsing constant, p. 151.

Crossrefs

Cf. A007525.

Programs

  • Mathematica
    RealDigits[1/Log[2] - 1, 10, 99] // First

Formula

Equals (1/log(2))*Integral_{x=0..1} x/(1+x) dx.
Equals Sum_{k>=1} 1/(2^k*(1 + 2^(2^(-k)))). - Amiram Eldar, May 28 2021

A371667 Decimal expansion of -Ei(-1) / log(2).

Original entry on oeis.org

3, 1, 6, 5, 0, 4, 1, 1, 4, 2, 0, 3, 1, 2, 6, 7, 8, 6, 8, 9, 3, 7, 5, 4, 6, 2, 0, 7, 5, 3, 8, 6, 2, 8, 1, 5, 6, 6, 9, 0, 8, 5, 9, 4, 3, 3, 8, 7, 9, 9, 6, 6, 4, 0, 5, 4, 3, 6, 1, 8, 8, 0, 5, 5, 0, 8, 0, 7, 5, 7, 9, 9, 6, 5, 6, 0, 0, 9, 6, 4, 9, 4, 5, 6, 2, 4, 7, 7, 5, 7, 9, 9, 6, 5, 1, 5, 4, 6, 3, 7, 1, 0, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2024

Keywords

Examples

			0.316504114203126786893754620753862815669085943...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-ExpIntegralEi[-1]/Log[2], 10, 103][[1]]
  • PARI
    eint1(1)/log(2) \\ Michel Marcus, Apr 11 2024

Formula

Equals Integral_{x=0..oo} exp(-2^x) dx.
Showing 1-7 of 7 results.