A007913 Squarefree part of n: a(n) is the smallest positive number m such that n/m is a square.
1, 2, 3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7, 29, 30, 31, 2, 33, 34, 35, 1, 37, 38, 39, 10, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 6, 55, 14, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71, 2, 73, 74, 3, 19, 77
Offset: 1
Links
- Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 1000 terms from T. D. Noe)
- Krassimir T. Atanassov, On Some of Smarandache's Problems.
- Krassimir T. Atanassov, On the 22nd, 23rd, and the 24th Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 2, 80-82.
- Andrew Booker, Ghaith Hiary, and Jon Keating, Detecting squarefree numbers, CNTA XII (2012).
- Henry Bottomley, Some Smarandache-type multiplicative sequences.
- John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv preprint arXiv:1105.3399 [math.GM], 2011.
- Vlad Copil and Laurenţiu Panaitopol, Properties of a sequence generated by positive integers, Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie, Nouvelle Série, Vol. 50 (98), No. 2 (2007), pp. 131-137; alternative link.
- Florentin Smarandache, Only Problems, Not Solutions!, Xiquan Publ., Phoenix-Chicago, 1993.
- Eric Weisstein's World of Mathematics, Squarefree Part.
Crossrefs
Programs
-
Haskell
a007913 n = product $ zipWith (^) (a027748_row n) (map (`mod` 2) $ a124010_row n) -- Reinhard Zumkeller, Jul 06 2012
-
Magma
[ Squarefree(n) : n in [1..256] ]; // N. J. A. Sloane, Dec 23 2006
-
Maple
A007913 := proc(n) local f,a,d; f := ifactors(n)[2] ; a := 1 ; for d in f do if type(op(2,d),'odd') then a := a*op(1,d) ; end if; end do: a; end proc: # R. J. Mathar, Mar 18 2011 # second Maple program: a:= n-> mul(i[1]^irem(i[2], 2), i=ifactors(n)[2]): seq(a(n), n=1..100); # Alois P. Heinz, Jul 20 2015 seq(n / expand(numtheory:-nthpow(n, 2)), n=1..77); # Peter Luschny, Jul 12 2022
-
Mathematica
data = Table[Sqrt[n], {n, 1, 100}]; sp = data /. Sqrt[] -> 1; sfp = data/sp /. Sqrt[x] -> x (* Artur Jasinski, Nov 03 2008 *) Table[Times@@Power@@@({#[[1]],Mod[ #[[2]],2]}&/@FactorInteger[n]),{n,100}] (* Zak Seidov, Apr 08 2009 *) Table[{p, e} = Transpose[FactorInteger[n]]; Times @@ (p^Mod[e, 2]), {n, 100}] (* T. D. Noe, May 20 2013 *) Sqrt[#] /. (c_:1)*a_^(b_:0) -> (c*a^b)^2& /@ Range@100 (* Bill Gosper, Jul 18 2015 *)
-
PARI
a(n)=core(n)
-
Python
from sympy import factorint, prod def A007913(n): return prod(p for p, e in factorint(n).items() if e % 2) # Chai Wah Wu, Feb 03 2015
-
Sage
[squarefree_part(n) for n in (1..77)] # Peter Luschny, Feb 04 2015
Formula
Multiplicative with a(p^k) = p^(k mod 2). - David W. Wilson, Aug 01 2001
a(n) modulo 2 = A035263(n); a(A036554(n)) is even; a(A003159(n)) is odd. - Philippe Deléham, Mar 28 2004
Dirichlet g.f.: zeta(2s)*zeta(s-1)/zeta(2s-2). - R. J. Mathar, Feb 11 2011
a(n) = n/( Sum_{k=1..n} floor(k^2/n)-floor((k^2 -1)/n) )^2. - Anthony Browne, Jun 06 2016
a(n) = rad(n)/a(n/rad(n)), where rad = A007947. This recurrence relation together with a(1) = 1 generate the sequence. - Velin Yanev, Sep 19 2017
From Peter Munn, Nov 18 2019: (Start)
a(k*m) = A059897(a(k), a(m)).
a(n) = n / A008833(n).
(End)
From Amiram Eldar, Mar 14 2021: (Start)
Theorems proven by Copil and Panaitopol (2007):
Lim sup_{n->oo} a(n+1)-a(n) = oo.
Lim inf_{n->oo} a(n+1)-a(n) = -oo.
Sum_{k=1..n} 1/a(k) ~ c*sqrt(n) + O(log(n)), where c = zeta(3/2)/zeta(3) (A090699). (End)
a(n) = A019554(n)^2/n. - Jianing Song, May 08 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/30 = 0.328986... . - Amiram Eldar, Oct 25 2022
Extensions
More terms from Michael Somos, Nov 24 2001
Definition reformulated by Daniel Forgues, Mar 24 2009
Comments