cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 235 results. Next

A317932 Denominators of certain "Dirichlet Square Root" sequences: a(n) = A046644(n)/(2^A007949(n)).

Original entry on oeis.org

1, 2, 1, 8, 2, 2, 2, 16, 2, 4, 2, 8, 2, 4, 2, 128, 2, 4, 2, 16, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 2, 256, 2, 4, 4, 16, 2, 4, 2, 32, 2, 4, 2, 16, 4, 4, 2, 128, 8, 16, 2, 16, 2, 4, 4, 32, 2, 4, 2, 16, 2, 4, 4, 1024, 4, 4, 2, 16, 2, 8, 2, 32, 2, 4, 8, 16, 4, 4, 2, 256, 8, 4, 2, 16, 4, 4, 2, 32, 2, 8, 4, 16, 2, 4, 4, 256, 2, 16, 4, 64, 2, 4, 2, 32, 4
Offset: 1

Views

Author

Antti Karttunen, Aug 11 2018

Keywords

Comments

These are denominators for rational valued sequences that are obtained as "Dirichlet Square Roots" of sequences b that satisfy the condition b(3) = 2, and b(p) = odd number for any other primes p. For example, A064989, A065769 and A234840. - Antti Karttunen, Aug 31 2018
The original definition was: Denominators of the rational valued sequence whose Dirichlet convolution with itself yields A002487, Stern's Diatomic sequence. However, this definition depends on the conjecture given in A261179.

Crossrefs

Cf. A317930, A318319, A318669 (some of the numerator sequences), A317931 (conjectured, for A002487).
Cf. A305439 (the 2-adic valuation), A318666.

Programs

Formula

a(n) = A046644(n)/A318666(n) = 2^A305439(n).
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, d 1, where b can be A064989, A065769 or A234840 for example, conjecturally also A002487.
Multiplicative with a(3^e) = 2^A011371(e), a(p^e) = 2^A005187(e) for any other primes. - Antti Karttunen, Sep 03 2018

Extensions

Definition changed, the original (now conjectured alternative definition) moved to the comments section by Antti Karttunen, Aug 31 2018
Keyword:mult added by Antti Karttunen, Sep 03 2018

A322026 Lexicographically earliest infinite sequence such that a(i) = a(j) => A007814(i) = A007814(j) and A007949(i) = A007949(j), for all i, j, where A007814 and A007949 give the 2- and 3-adic valuations of n.

Original entry on oeis.org

1, 2, 3, 4, 1, 5, 1, 6, 7, 2, 1, 8, 1, 2, 3, 9, 1, 10, 1, 4, 3, 2, 1, 11, 1, 2, 12, 4, 1, 5, 1, 13, 3, 2, 1, 14, 1, 2, 3, 6, 1, 5, 1, 4, 7, 2, 1, 15, 1, 2, 3, 4, 1, 16, 1, 6, 3, 2, 1, 8, 1, 2, 7, 17, 1, 5, 1, 4, 3, 2, 1, 18, 1, 2, 3, 4, 1, 5, 1, 9, 19, 2, 1, 8, 1, 2, 3, 6, 1, 10, 1, 4, 3, 2, 1, 20, 1, 2, 7, 4, 1, 5, 1, 6, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2018

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A007814(n), A007949(n)].
For all i, j:
A305900(i) = A305900(j) => a(i) = a(j),
a(i) = a(j) => A122841(i) = A122841(j),
a(i) = a(j) => A244417(i) = A244417(j),
a(i) = a(j) => A322316(i) = A322316(j) => A072078(i) = A072078(j).
If and only if a(k) > a(i) for all k > i then k is in A003586, - David A. Corneth, Dec 03 2018
That is, A003586 gives the positions of records (1, 2, 3, 4, 5, ...) in this sequence.
Sequence A126760 (without its initial zero) and this sequence are ordinal transforms of each other.

Crossrefs

Cf. A003586 (positions of records, the first occurrence of n), A007814, A007949, A065331, A071521, A072078, A087465, A122841, A126760 (ordinal transform), A322316, A323883, A323884.
Cf. also A247714 and A255975.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007814(n) = valuation(n,2);
    A007949(n) = valuation(n,3);
    v322026 = rgs_transform(vector(up_to, n, [A007814(n), A007949(n)]));
    A322026(n) = v322026[n];
    
  • PARI
    A065331(n) = (3^valuation(n, 3)<A065331
    A071521(n) = { my(t=1/3); sum(k=0, logint(n, 3), t*=3; logint(n\t, 2)+1); }; \\ From A071521.
    A322026(n) = A071521(A065331(n)); \\ Antti Karttunen, Sep 08 2024

Formula

For s = A003586(n), a(s) = n = a((6k+1)*s) = a((6k-1)*s), where s is the n-th 3-smooth number and k > 0. - David A. Corneth, Dec 03 2018
A065331(n) = A003586(a(n)). - David A. Corneth, Dec 04 2018
From Antti Karttunen, Sep 08 2024: (Start)
a(n) = Sum{k=1..n} [A126760(k)==A126760(n)], where [ ] is the Iverson bracket.
a(n) = A071521(A065331(n)). [Found by Sequence Machine and also by LODA miner]
a(n) = A323884(25*n). [Conjectured by Sequence Machine]
(End)

A080278 a(n) = (3^(v_3(n) + 1) - 1)/2, where v_3(n) = highest power of 3 dividing n = A007949(n).

Original entry on oeis.org

1, 1, 4, 1, 1, 4, 1, 1, 13, 1, 1, 4, 1, 1, 4, 1, 1, 13, 1, 1, 4, 1, 1, 4, 1, 1, 40, 1, 1, 4, 1, 1, 4, 1, 1, 13, 1, 1, 4, 1, 1, 4, 1, 1, 13, 1, 1, 4, 1, 1, 4, 1, 1, 40, 1, 1, 4, 1, 1, 4, 1, 1, 13, 1, 1, 4, 1, 1, 4, 1, 1, 13, 1, 1, 4, 1, 1, 4, 1, 1, 121, 1, 1, 4, 1, 1, 4, 1, 1, 13, 1, 1, 4, 1, 1, 4, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Mar 19 2003

Keywords

Comments

Denominator of the quotient sigma(3*n)/sigma(n). - Labos Elemer, Nov 04 2003
a(n) = b/(3*(c+d)) where b, c, d are the sums of the divisors of 3*n that are congruent respectively to 0, 1 and 2 mod 3. - Michel Lagneau, Nov 05 2012
Sum of powers of 3 dividing n. - Amiram Eldar, Nov 27 2022

Examples

			a(6) = 4 because the divisors of 3*6 = 18 are {1, 2, 3, 6, 9, 18} => b = 3 + 6 + 9 + 18 = 36, c = 1, d = 2, hence a(6) = b/(3*(c+d)) = 36/(3*(1+2)) = 36/9 = 4. - _Michel Lagneau_, Nov 05 2012
		

Crossrefs

Cf. A000203, A001620, A007949, A080333, A088838 (numerator of sigma(3*n)/sigma(n)).

Programs

  • Maple
    A080278 := n->(3^(A007949(n)+1)-1)/2;
  • Mathematica
    Table[Denominator[DivisorSigma[1, 3*n]/DivisorSigma[1, n]], {n, 1, 128}]
    a[n_] := (3^(IntegerExponent[n, 3] + 1) - 1)/2; Array[a, 100] (* Amiram Eldar, Nov 27 2022 *)
  • PARI
    a(n) = denominator(sigma(3*n)/sigma(n)); \\ Michel Marcus, Dec 15 2019
    
  • PARI
    a(n) = (3^(valuation(n, 3) + 1) - 1)/2; \\ Amiram Eldar, Nov 27 2022

Formula

G.f.: Sum_{k>=0} 3^k*x^(3^k)/(1-x^(3^k)). - Ralf Stephan, Jun 15 2003
L.g.f.: -log(Product_{k>=0} (1 - x^(3^k))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 15 2018
a(n) = sigma(n)/(sigma(3*n) - 3*sigma(n)), where sigma(n) = A000203(n). - Peter Bala, Jun 10 2022
From Amiram Eldar, Nov 27 2022: (Start)
Multiplicative with a(3^e) = (3^(e+1)-1)/2, and a(p^e) = 1 for p != 3.
Dirichlet g.f.: zeta(s) / (1 - 3^(1 - s)).
Sum_{k=1..n} a(k) ~ n*log_3(n) + (1/2 + (gamma - 1)/log(3))*n, where gamma is Euler's constant (A001620). (End)

A265753 a(n) = A007949(A265399(n)).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 3, 1, 5, 2, 2, 0, 8, 2, 13, 1, 3, 3, 21, 1, 2, 5, 3, 2, 34, 2, 55, 0, 4, 8, 3, 2, 89, 13, 6, 1, 144, 3, 233, 3, 3, 21, 377, 1, 4, 2, 9, 5, 610, 3, 4, 2, 14, 34, 987, 2, 1597, 55, 4, 0, 6, 4, 2584, 8, 22, 3, 4181, 2, 6765, 89, 3, 13, 5, 6, 10946, 1, 4, 144, 17711, 3, 9, 233, 35, 3, 28657, 3, 7, 21
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2015

Keywords

Comments

a(n) = Coefficient of x in the reduction under x^2->x+1 of the polynomial encoded in the prime factorization of n. (Assuming here only polynomials with nonnegative integer coefficients, see e.g. A206296 for the details).
Completely additive with a(prime(k)) = F(k-1), where F(k) denotes the k-th Fibonacci number, A000045(k). - Peter Munn, Mar 29 2021, incorporating comment by Antti Karttunen, Dec 15 2015

Crossrefs

Programs

Formula

a(n) = A007949(A265399(n)).
Other identities. For all n >= 1:
a(A000040(n)) = A000045(n-1). [Generalized by Peter Munn, Mar 29 2021]
a(A206296(n)) = A112576(n).
a(A265750(n)) = A192751(n).

A379005 Lexicographically earliest infinite sequence such that a(i) = a(j) => v_2(i) = v_2(j), v_3(i) = v_3(j) and v_5(i) = v_5(j), for all i, j, where v_2 (A007814), v_3 (A007949) and v_5 (A112765) give the 2-, 3- and 5-adic valuations of n respectively.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 1, 7, 8, 9, 1, 10, 1, 2, 11, 12, 1, 13, 1, 14, 3, 2, 1, 15, 16, 2, 17, 4, 1, 18, 1, 19, 3, 2, 5, 20, 1, 2, 3, 21, 1, 6, 1, 4, 22, 2, 1, 23, 1, 24, 3, 4, 1, 25, 5, 7, 3, 2, 1, 26, 1, 2, 8, 27, 5, 6, 1, 4, 3, 9, 1, 28, 1, 2, 29, 4, 1, 6, 1, 30, 31, 2, 1, 10, 5, 2, 3, 7, 1, 32, 1, 4, 3, 2, 5, 33, 1, 2, 8, 34, 1, 6, 1, 7, 11
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2024

Keywords

Comments

Restricted growth sequence transform of A355582.
For all i, j:
A379001(i) = A379001(j) => a(i) = a(j),
a(i) = a(j) => A322026(i) = A322026(j),
a(i) = a(j) => A379004(i) = A379004(j).

Crossrefs

Cf. A007814, A007949, A112765, A355582, A379006 (ordinal transform).

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v379005 = rgs_transform(vector(up_to, n, [valuation(n,2), valuation(n,3), valuation(n,5)]));
    A379005(n) = v379005[n];

A305893 Filter sequence combining 3-adic valuation (A007949) and the prime signature (A046523) of n.

Original entry on oeis.org

1, 2, 3, 4, 2, 5, 2, 6, 7, 8, 2, 9, 2, 8, 5, 10, 2, 11, 2, 12, 5, 8, 2, 13, 4, 8, 14, 12, 2, 15, 2, 16, 5, 8, 8, 17, 2, 8, 5, 18, 2, 15, 2, 12, 11, 8, 2, 19, 4, 12, 5, 12, 2, 20, 8, 18, 5, 8, 2, 21, 2, 8, 11, 22, 8, 15, 2, 12, 5, 23, 2, 24, 2, 8, 9, 12, 8, 15, 2, 25, 26, 8, 2, 21, 8, 8, 5, 18, 2, 27, 8, 12, 5, 8, 8, 28, 2, 12, 11, 29, 2, 15, 2, 18, 15
Offset: 1

Views

Author

Antti Karttunen, Jun 14 2018

Keywords

Comments

Restricted growth sequence transform of A286463, of the ordered pair [A007949(n), A046523(n)].

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007949(n) = valuation(n,3);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    Aux305893(n) = [A007949(n), A046523(n)];
    v305893 = rgs_transform(vector(up_to,n,Aux305893(n)));
    A305893(n) = v305893[n];

A305439 a(n) = A046645(n) - A007949(n); the 2-adic valuation of A317932.

Original entry on oeis.org

0, 1, 0, 3, 1, 1, 1, 4, 1, 2, 1, 3, 1, 2, 1, 7, 1, 2, 1, 4, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 1, 8, 1, 2, 2, 4, 1, 2, 1, 5, 1, 2, 1, 4, 2, 2, 1, 7, 3, 4, 1, 4, 1, 2, 2, 5, 1, 2, 1, 4, 1, 2, 2, 10, 2, 2, 1, 4, 1, 3, 1, 5, 1, 2, 3, 4, 2, 2, 1, 8, 3, 2, 1, 4, 2, 2, 1, 5, 1, 3, 2, 4, 1, 2, 2, 8, 1, 4, 2, 6, 1, 2, 1, 5, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 02 2018

Keywords

Comments

Apart from a(1) and a(3), all other terms are positive.

Crossrefs

Programs

Formula

a(n) = A046645(n) - A007949(n).
a(n) = A007814(A317932(n)).

A379001 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j), v_2(i) = v_2(j), v_3(i) = v_3(j) and v_5(i) = v_5(j), for all i, j, where v_2 (A007814), v_3 (A007949) and v_5 (A112765) give the 2-, 3- and 5-adic valuations of n respectively.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 7, 11, 7, 12, 13, 14, 7, 15, 7, 16, 17, 12, 7, 18, 19, 12, 20, 21, 7, 22, 7, 23, 17, 12, 24, 25, 7, 12, 17, 26, 7, 27, 7, 21, 28, 12, 7, 29, 30, 31, 17, 21, 7, 32, 24, 33, 17, 12, 7, 34, 7, 12, 35, 36, 24, 27, 7, 21, 17, 37, 7, 38, 7, 12, 39, 21, 40, 27, 7, 41, 42, 12, 7, 43, 24, 12, 17, 33, 7, 44, 40, 21, 17, 12, 24, 45, 7, 46, 35
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2024

Keywords

Comments

Restricted growth sequence transform of ordered 4-tuple [A046523(n), A007814(n), A007949(n), A112765(n)].
For all i, j:
A379000(i) = A379000(j) => a(i) = a(j),
a(i) = a(j) => A358230(i) = A358230(j),
a(i) = a(j) => A379002(i) = A379002(j),
a(i) = a(j) => A379005(i) = A379005(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };
    v379001 = rgs_transform(vector(up_to, n, [A046523(n), valuation(n,2), valuation(n,3), valuation(n,5)]));
    A379001(n) = v379001[n];

A336068 Numbers k such that the exponent of the highest power of 3 dividing k (A007949) is a divisor of k.

Original entry on oeis.org

3, 6, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 48, 51, 54, 57, 60, 66, 69, 72, 75, 78, 84, 87, 90, 93, 96, 102, 105, 108, 111, 114, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 156, 159, 165, 168, 174, 177, 180, 183, 186, 189, 192, 195, 198, 201, 204
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2020

Keywords

Comments

All the terms are divisible by 3 by definition.
Šalát (1994) proved that the asymptotic density of this sequence is 0.287106... (A336069).

Examples

			3 is a term since A007949(3) = 1 is a divisor of 3.
		

Crossrefs

A055777 is a subsequence.

Programs

  • Mathematica
    Select[Range[200], Mod[#, 3] == 0 && Divisible[#, IntegerExponent[#, 3]] &]
  • PARI
    isok(m) = if (!(m%3), (m % valuation(m,3)) == 0); \\ Michel Marcus, Jul 08 2020

A358230 Lexicographically earliest infinite sequence such that a(i) = a(j) => A007814(i) = A007814(j), A007949(i) = A007949(j) and A046523(i) = A046523(j), for all i, j, where A007814 and A007949 give the 2-adic and 3-adic valuation, and A046523 gives the prime signature of its argument.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 5, 7, 8, 9, 5, 10, 5, 9, 11, 12, 5, 13, 5, 14, 11, 9, 5, 15, 16, 9, 17, 14, 5, 18, 5, 19, 11, 9, 20, 21, 5, 9, 11, 22, 5, 18, 5, 14, 23, 9, 5, 24, 16, 25, 11, 14, 5, 26, 20, 22, 11, 9, 5, 27, 5, 9, 23, 28, 20, 18, 5, 14, 11, 29, 5, 30, 5, 9, 31, 14, 20, 18, 5, 32, 33, 9, 5, 27, 20, 9, 11, 22, 5, 34, 20, 14, 11, 9, 20, 35, 5, 25, 23, 36, 5, 18, 5, 22, 37
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2022

Keywords

Comments

Restricted growth sequence transform of the triple [A007814(n), A007949(n), A046523(n)].
For all i, j:
A305900(i) = A305900(j) => a(i) = a(j),
a(i) = a(j) => A305891(i) = A305891(j),
a(i) = a(j) => A305893(i) = A305893(j),
a(i) = a(j) => A322026(i) = A322026(j) => A072078(i) = A072078(j),
a(i) = a(j) => A065333(i) = A065333(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007814(n) = valuation(n,2);
    A007949(n) = valuation(n,3);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    v358230 = rgs_transform(vector(up_to, n, [A007814(n), A007949(n), A046523(n)]));
    A358230(n) = v358230[n];
Showing 1-10 of 235 results. Next