A008346 a(n) = Fibonacci(n) + (-1)^n.
1, 0, 2, 1, 4, 4, 9, 12, 22, 33, 56, 88, 145, 232, 378, 609, 988, 1596, 2585, 4180, 6766, 10945, 17712, 28656, 46369, 75024, 121394, 196417, 317812, 514228, 832041, 1346268, 2178310, 3524577, 5702888, 9227464, 14930353, 24157816, 39088170, 63245985, 102334156
Offset: 0
Examples
The Boolean complex of Coxeter group A_4 is homotopy equivalent to the wedge of 2 spheres S^3, which has Euler characteristic 1 - 2 = -1.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- G. Bilgici, Generalized order-k Pell-Padovan-like numbers by matrix methods, Pure and Applied Mathematics Journal, 2013; 2(6): 174-178.
- Tomislav Došlić, Mate Puljiz, Stjepan Šebek, and Josip Žubrinić, Predators and altruists arriving on jammed Riviera, arXiv:2401.01225 [math.CO], 2024. See p. 14.
- N. Gogin and A. Mylläri, Padovan-like sequences and Bell polynomials, Proceedings of Applications of Computer Algebra ACA, 2013.
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 13.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 445
- Jay Pantone, A. R. Klotz, and E. Sullivan, Exactly-solvable self-trapping lattice walks. II. Lattices of arbitrary height., arXiv:2407.18205 [math.CO], 2024.
- K. Ragnarsson and B. E. Tenner, Homotopy type of the Boolean complex of a Coxeter system, arXiv:0806.0906 [math.CO], 2008-2009.
- Index entries for linear recurrences with constant coefficients, signature (0,2,1).
Programs
-
GAP
List([0..50], n-> Fibonacci(n) + (-1)^n); # G. C. Greubel, Jul 13 2019
-
Magma
[Fibonacci(n) + (-1)^n: n in [0..50]]; // Vincenzo Librandi, Apr 23 2011
-
Maple
with(combinat): f := n->fibonacci(n)+(-1)^n; seq(f(n), n=0..40);
-
Mathematica
Table[Fibonacci[n]+(-1)^n,{n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2008 *) CoefficientList[Series[1/(1-2x^2-x^3), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 10 2013 *) LinearRecurrence[{0,2,1}, {1,0,2}, 51] (* Ray Chandler, Sep 08 2015 *)
-
PARI
a(n)=fibonacci(n)+(-1)^n \\ Charles R Greathouse IV, Feb 03 2014
-
Sage
[fibonacci(n)+(-1)^n for n in (0..50)] # G. C. Greubel, Jul 13 2019
Formula
G.f.: 1/(1 - 2*x^2 - x^3).
a(n) = 2*a(n-2) + a(n-3).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} (-1)^(n-k-j)binomial(j, k). Diagonal sums of A059260. - Paul Barry, Sep 23 2004
From Paul Barry, Oct 04 2004: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(k, n-2k)2^(3k-n).
a(n) = Sum_{k=0..floor(n/2)} binomial(k, n-2k)2^k(1/2)^(n-2k). (End)
From Paul Barry, Oct 25 2004: (Start)
G.f.: 1/((1+x)*(1-x-x^2)).
a(n) = Sum_{k=0..n} binomial(n-k-1, k). (End)
a(n) = |1 + (-1)^(n-1)*Fibonacci(n-1)|. - Bridget Tenner, Jun 04 2008
a(n) = Fibonacci(n+1) - a(n-1), with a(0) = 1. - Franklin T. Adams-Watters, Mar 26 2014
a(n) = b(n+1) where b(n) = b(n-1) + b(n-2) + (-1)^(n+1), b(0) = 0, b(1) = 1. See also A098600. - Richard R. Forberg, Aug 30 2014
Comments